Deep Learning-Driven Segmentation of Ischemic Stroke Lesions Using Multi-Channel MRI
- URL: http://arxiv.org/abs/2501.02287v1
- Date: Sat, 04 Jan 2025 13:38:06 GMT
- Title: Deep Learning-Driven Segmentation of Ischemic Stroke Lesions Using Multi-Channel MRI
- Authors: Ashiqur Rahman, Muhammad E. H. Chowdhury, Md Sharjis Ibne Wadud, Rusab Sarmun, Adam Mushtak, Sohaib Bassam Zoghoul, Israa Al-Hashimi,
- Abstract summary: This study introduces a novel deep learning-based method for segmenting ischemic stroke lesions.
The proposed architecture integrates DenseNet121 as the encoder with Self-Organized Operational Neural Networks (ONN) in the decoder.
The model achieved Dice Similarity Coefficients (DSC) of 83.88% using DWI alone, 85.86% with DWI and ADC, and 87.49% with the integration of DWI, ADC, and eDWI.
- Score: 0.0
- License:
- Abstract: Ischemic stroke, caused by cerebral vessel occlusion, presents substantial challenges in medical imaging due to the variability and subtlety of stroke lesions. Magnetic Resonance Imaging (MRI) plays a crucial role in diagnosing and managing ischemic stroke, yet existing segmentation techniques often fail to accurately delineate lesions. This study introduces a novel deep learning-based method for segmenting ischemic stroke lesions using multi-channel MRI modalities, including Diffusion Weighted Imaging (DWI), Apparent Diffusion Coefficient (ADC), and enhanced Diffusion Weighted Imaging (eDWI). The proposed architecture integrates DenseNet121 as the encoder with Self-Organized Operational Neural Networks (SelfONN) in the decoder, enhanced by Channel and Space Compound Attention (CSCA) and Double Squeeze-and-Excitation (DSE) blocks. Additionally, a custom loss function combining Dice Loss and Jaccard Loss with weighted averages is introduced to improve model performance. Trained and evaluated on the ISLES 2022 dataset, the model achieved Dice Similarity Coefficients (DSC) of 83.88% using DWI alone, 85.86% with DWI and ADC, and 87.49% with the integration of DWI, ADC, and eDWI. This approach not only outperforms existing methods but also addresses key limitations in current segmentation practices. These advancements significantly enhance diagnostic precision and treatment planning for ischemic stroke, providing valuable support for clinical decision-making.
Related papers
- KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation [46.57880203321858]
We propose a novel network (KaLDeX) for vascular segmentation leveraging a Kalman filter based linear deformable cross attention (LDCA) module.
Our approach is based on two key components: Kalman filter (KF) based linear deformable convolution (LD) and cross-attention (CA) modules.
The proposed method is evaluated on retinal fundus image datasets (DRIVE, CHASE_BD1, and STARE) as well as the 3mm and 6mm of the OCTA-500 dataset.
arXiv Detail & Related papers (2024-10-28T16:00:42Z) - Multi-Model Ensemble Approach for Accurate Bi-Atrial Segmentation in LGE-MRI of Atrial Fibrillation Patients [3.676588766498097]
Atrial fibrillation (AF) is the most prevalent form of cardiac arrhythmia and is associated with increased morbidity and mortality.
This work presents an ensemble approach that integrates multiple machine learning models, including Unet, ResNet, EfficientNet and VGG, to perform automatic bi-atrial segmentation from LGE-MRI data.
arXiv Detail & Related papers (2024-09-24T13:33:46Z) - Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging [70.66500060987312]
Diffusion-weighted imaging (DWI) is a type of Magnetic Resonance Imaging (MRI) technique sensitised to the diffusivity of water molecules.
This work proposes DirGeo-DTI, a deep learning-based method to estimate reliable DTI metrics even from a set of DWIs acquired with the minimum theoretical number (6) of gradient directions.
arXiv Detail & Related papers (2024-09-11T11:12:26Z) - SPOCKMIP: Segmentation of Vessels in MRAs with Enhanced Continuity using Maximum Intensity Projection as Loss [0.5224038339798621]
This study focuses on improving the segmentation quality using the Maximum Intensity Projection(MIP) as an additional loss criterion.
Two methods are proposed with the incorporation of MIPs of label segmentation on the single(z-axis) and multiple perceivable axes of the 3D volume.
The proposed MIP-based methods produce segmentations with improved vessel continuity, which is evident in visual examinations of ROIs.
arXiv Detail & Related papers (2024-07-11T16:39:24Z) - Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning [6.44069573245889]
Brain tumor segmentation remains a significant challenge, particularly in the context of multi-modal magnetic resonance imaging (MRI)
We propose a novel strategy, which is called masked predicted pre-training, enabling robust feature learning from incomplete modality data.
In the fine-tuning phase, we utilize a knowledge distillation technique to align features between complete and missing modality data, simultaneously enhancing model robustness.
arXiv Detail & Related papers (2024-06-12T20:35:16Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Deep Learning Framework with Multi-Head Dilated Encoders for Enhanced
Segmentation of Cervical Cancer on Multiparametric Magnetic Resonance Imaging [0.6597195879147557]
T2-weighted magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) are essential components for cervical cancer diagnosis.
We propose a novel multi-head framework that uses dilated convolutions and shared residual connections for separate encoding of multiparametric MRI images.
arXiv Detail & Related papers (2023-06-19T19:41:21Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - ISLES 2022: A multi-center magnetic resonance imaging stroke lesion
segmentation dataset [36.278933802685316]
This dataset comprises 400 multi-vendor MRI cases with high variability in stroke lesion size, quantity and location.
It is split into a training dataset of n=250 and a test dataset of n=150.
The test dataset will be used for model validation only and will not be released to the public.
arXiv Detail & Related papers (2022-06-14T08:54:40Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.