Context-augmented Retrieval: A Novel Framework for Fast Information Retrieval based Response Generation using Large Language Model
- URL: http://arxiv.org/abs/2406.16383v2
- Date: Wed, 31 Jul 2024 15:02:07 GMT
- Title: Context-augmented Retrieval: A Novel Framework for Fast Information Retrieval based Response Generation using Large Language Model
- Authors: Sai Ganesh, Anupam Purwar, Gautam B,
- Abstract summary: As the corpus of contextual information grows, the answer/inference quality of Retrieval Augmented Generation (RAG) based Question Answering (QA) systems declines.
This work solves this problem by combining classical text classification with the Large Language Model (LLM)
New approach Context Augmented retrieval (CAR) demonstrates good quality answer generation along with significant reduction in information retrieval and answer generation time.
- Score: 0.0
- License:
- Abstract: Generating high-quality answers consistently by providing contextual information embedded in the prompt passed to the Large Language Model (LLM) is dependent on the quality of information retrieval. As the corpus of contextual information grows, the answer/inference quality of Retrieval Augmented Generation (RAG) based Question Answering (QA) systems declines. This work solves this problem by combining classical text classification with the Large Language Model (LLM) to enable quick information retrieval from the vector store and ensure the relevancy of retrieved information. For the same, this work proposes a new approach Context Augmented retrieval (CAR), where partitioning of vector database by real-time classification of information flowing into the corpus is done. CAR demonstrates good quality answer generation along with significant reduction in information retrieval and answer generation time.
Related papers
- Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - Exploring Hint Generation Approaches in Open-Domain Question Answering [16.434748534272014]
We introduce a novel context preparation approach called HINTQA.
Unlike traditional methods, HINTQA prompts LLMs to produce hints about potential answers for the question.
We demonstrate that hints enhance the accuracy of answers more than retrieved and generated contexts.
arXiv Detail & Related papers (2024-09-24T13:50:32Z) - QAEA-DR: A Unified Text Augmentation Framework for Dense Retrieval [12.225881591629815]
In dense retrieval, embedding long texts into dense vectors can result in information loss, leading to inaccurate query-text matching.
Recent studies mainly focus on improving the sentence embedding model or retrieval process.
We introduce a novel text augmentation framework for dense retrieval, which transforms raw documents into information-dense text formats.
arXiv Detail & Related papers (2024-07-29T17:39:08Z) - Better RAG using Relevant Information Gain [1.5604249682593647]
A common way to extend the memory of large language models (LLMs) is by retrieval augmented generation (RAG)
We propose a novel simple optimization metric based on relevant information gain, a probabilistic measure of the total information relevant to a query for a set of retrieved results.
When used as a drop-in replacement for the retrieval component of a RAG system, this method yields state-of-the-art performance on question answering tasks.
arXiv Detail & Related papers (2024-07-16T18:09:21Z) - Optimization of Retrieval-Augmented Generation Context with Outlier Detection [0.0]
We focus on methods to reduce the size and improve the quality of the prompt context required for question-answering systems.
Our goal is to select the most semantically relevant documents, treating the discarded ones as outliers.
It was found that the greatest improvements were achieved with increasing complexity of the questions and answers.
arXiv Detail & Related papers (2024-07-01T15:53:29Z) - Dense X Retrieval: What Retrieval Granularity Should We Use? [56.90827473115201]
Often-overlooked design choice is the retrieval unit in which the corpus is indexed, e.g. document, passage, or sentence.
We introduce a novel retrieval unit, proposition, for dense retrieval.
Experiments reveal that indexing a corpus by fine-grained units such as propositions significantly outperforms passage-level units in retrieval tasks.
arXiv Detail & Related papers (2023-12-11T18:57:35Z) - Evaluating Generative Ad Hoc Information Retrieval [58.800799175084286]
generative retrieval systems often directly return a grounded generated text as a response to a query.
Quantifying the utility of the textual responses is essential for appropriately evaluating such generative ad hoc retrieval.
arXiv Detail & Related papers (2023-11-08T14:05:00Z) - RegaVAE: A Retrieval-Augmented Gaussian Mixture Variational Auto-Encoder
for Language Modeling [79.56442336234221]
We introduce RegaVAE, a retrieval-augmented language model built upon the variational auto-encoder (VAE)
It encodes the text corpus into a latent space, capturing current and future information from both source and target text.
Experimental results on various datasets demonstrate significant improvements in text generation quality and hallucination removal.
arXiv Detail & Related papers (2023-10-16T16:42:01Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
We show that strong performance can be achieved by a method we call Iter-RetGen, which synergizes retrieval and generation in an iterative manner.
A model output shows what might be needed to finish a task, and thus provides an informative context for retrieving more relevant knowledge.
Iter-RetGen processes all retrieved knowledge as a whole and largely preserves the flexibility in generation without structural constraints.
arXiv Detail & Related papers (2023-05-24T16:17:36Z) - Generate rather than Retrieve: Large Language Models are Strong Context
Generators [74.87021992611672]
We present a novel perspective for solving knowledge-intensive tasks by replacing document retrievers with large language model generators.
We call our method generate-then-read (GenRead), which first prompts a large language model to generate contextutal documents based on a given question, and then reads the generated documents to produce the final answer.
arXiv Detail & Related papers (2022-09-21T01:30:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.