AlignRAG: Leveraging Critique Learning for Evidence-Sensitive Retrieval-Augmented Reasoning
- URL: http://arxiv.org/abs/2504.14858v3
- Date: Wed, 21 May 2025 03:51:20 GMT
- Title: AlignRAG: Leveraging Critique Learning for Evidence-Sensitive Retrieval-Augmented Reasoning
- Authors: Jiaqi Wei, Hao Zhou, Xiang Zhang, Di Zhang, Zijie Qiu, Wei Wei, Jinzhe Li, Wanli Ouyang, Siqi Sun,
- Abstract summary: RAG has become a widely adopted paradigm for enabling knowledge-grounded large language models (LLMs)<n>Standard RAG pipelines often fail to ensure that model reasoning remains consistent with the evidence retrieved, leading to factual inconsistencies or unsupported conclusions.<n>In this work, we reinterpret RAG as Retrieval-Augmented Reasoning and identify a central but underexplored problem: textitReasoning Misalignment.
- Score: 61.28113271728859
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-augmented generation (RAG) has become a widely adopted paradigm for enabling knowledge-grounded large language models (LLMs). However, standard RAG pipelines often fail to ensure that model reasoning remains consistent with the evidence retrieved, leading to factual inconsistencies or unsupported conclusions. In this work, we reinterpret RAG as Retrieval-Augmented Reasoning and identify a central but underexplored problem: \textit{Reasoning Misalignment}-the divergence between an LLM's internal reasoning trajectory and the evidential constraints provided by retrieval. To address this issue, we propose \textsc{AlignRAG}, a novel iterative framework grounded in Critique-Driven Alignment (CDA). At the heart of \textsc{AlignRAG} lies a \textit{contrastive critique synthesis} mechanism that generates retrieval-sensitive critiques while mitigating self-bias. This mechanism trains a dedicated retrieval-augmented \textit{Critic Language Model (CLM)} using labeled critiques that distinguish between evidence-aligned and misaligned reasoning. Alignment signals for supervision are obtained through self-supervised or externally guided labeling strategies. The resulting CLM is explicitly optimized for evidence sensitivity, enabling it to detect and revise reasoning errors during inference without relying solely on self-generated feedback. Empirical evaluations show that our 8B-parameter CLM improves performance over the Self-Refine baseline by 12.1\% on out-of-domain tasks and outperforms a standard 72B-parameter CLM by 2.2\%, while remaining compatible with existing RAG architectures as a plug-and-play module. Overall, AlignRAG offers a principled solution for aligning model reasoning with retrieved evidence, substantially improving the factual reliability and robustness of RAG systems.
Related papers
- ASCoT: An Adaptive Self-Correction Chain-of-Thought Method for Late-Stage Fragility in LLMs [16.266957200961908]
Chain-of-Thought (CoT) prompting has significantly advanced the reasoning capabilities of Large Language Models (LLMs)<n>Errors introduced in the later stages of a CoT chain are significantly more likely to corrupt the final answer than identical errors made at the beginning.<n>We introduce the Adaptive Self-Correction Chain-of-Thought (ASCoT) method to address this specific vulnerability.
arXiv Detail & Related papers (2025-08-07T11:26:40Z) - PrismRAG: Boosting RAG Factuality with Distractor Resilience and Strategized Reasoning [57.89188317734747]
PrismRAG trains the model with distractor-aware QA pairs mixing gold evidence with subtle distractor passages.<n>It instills reasoning-centric habits that make the LLM plan, rationalize, and synthesize without relying on extensive human engineered instructions.
arXiv Detail & Related papers (2025-07-25T00:15:31Z) - Rethinking All Evidence: Enhancing Trustworthy Retrieval-Augmented Generation via Conflict-Driven Summarization [11.875601079871865]
We propose CARE-RAG (Conflict-Aware and Reliable Evidence for RAG), a novel framework that improves trustworthiness through Conflict-Driven Summarization of all available evidence.<n>To detect and summarize conflicts, we distill a 3B LLaMA3.2 model to perform conflict-driven summarization, enabling reliable synthesis across multiple sources.<n>Experiments on revised QA datasets with retrieval data show that CARE-RAG consistently outperforms strong RAG baselines, especially in scenarios with noisy or conflicting evidence.
arXiv Detail & Related papers (2025-07-02T01:39:49Z) - RAG-Zeval: Towards Robust and Interpretable Evaluation on RAG Responses through End-to-End Rule-Guided Reasoning [64.46921169261852]
RAG-Zeval is a novel end-to-end framework that formulates faithfulness and correctness evaluation as a rule-guided reasoning task.<n>Our approach trains evaluators with reinforcement learning, facilitating compact models to generate comprehensive and sound assessments.<n>Experiments demonstrate RAG-Zeval's superior performance, achieving the strongest correlation with human judgments.
arXiv Detail & Related papers (2025-05-28T14:55:33Z) - A Novel Generative Model with Causality Constraint for Mitigating Biases in Recommender Systems [20.672668625179526]
Latent confounding bias can obscure the true causal relationship between user feedback and item exposure.<n>We propose a novel generative framework called Latent Causality Constraints for Debiasing representation learning in Recommender Systems.
arXiv Detail & Related papers (2025-05-22T14:09:39Z) - Trust, But Verify: A Self-Verification Approach to Reinforcement Learning with Verifiable Rewards [67.86091419220816]
Large Language Models (LLMs) show great promise in complex reasoning.<n>A prevalent issue is superficial self-reflection'', where models fail to robustly verify their own outputs.<n>We introduce RISE (Reinforcing Reasoning with Self-Verification), a novel online RL framework designed to tackle this.
arXiv Detail & Related papers (2025-05-19T17:59:31Z) - CDF-RAG: Causal Dynamic Feedback for Adaptive Retrieval-Augmented Generation [3.8808821719659763]
We introduce Causal Dynamic Feedback for Adaptive Retrieval-Augmented Generation (CDF-RAG)<n>CDF-RAG iteratively refines queries, retrieves structured causal graphs, and enables multi-hop causal reasoning across interconnected knowledge sources.<n>We evaluate CDF-RAG on four diverse datasets, demonstrating its ability to improve response accuracy and causal correctness over existing RAG-based methods.
arXiv Detail & Related papers (2025-04-17T01:15:13Z) - ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation [38.64751082999587]
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy.<n>We propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations.<n>Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG)
arXiv Detail & Related papers (2025-03-27T17:44:18Z) - CausalRAG: Integrating Causal Graphs into Retrieval-Augmented Generation [11.265999775635823]
CausalRAG is a novel framework that incorporates causal graphs into the retrieval process.<n>By constructing and tracing causal relationships, CausalRAG preserves contextual continuity and improves retrieval precision.<n>Our findings suggest that grounding retrieval in causal reasoning provides a promising approach to knowledge-intensive tasks.
arXiv Detail & Related papers (2025-03-25T17:43:08Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.<n>Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - Reinforcing Thinking through Reasoning-Enhanced Reward Models [6.636512424910708]
Large Language Models (LLMs) exhibit great potential in complex multi-step reasoning through inference-time thinking.<n>LLMs struggle with deciding when to stop thinking due to limited self-awareness about their knowledge boundaries.<n>This work addresses these challenges by distilling the LLM's own reasoning processes into synthetic behavioral data.
arXiv Detail & Related papers (2024-12-31T04:50:15Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
Existing large language models (LLMs) show exceptional problem-solving capabilities but might struggle with complex reasoning tasks.<n>We propose textbfRAG-Star, a novel RAG approach that integrates retrieved information to guide the tree-based deliberative reasoning process.<n>Our experiments involving Llama-3.1-8B-Instruct and GPT-4o demonstrate that RAG-Star significantly outperforms previous RAG and reasoning methods.
arXiv Detail & Related papers (2024-12-17T13:05:36Z) - Eliciting Critical Reasoning in Retrieval-Augmented Language Models via Contrastive Explanations [4.697267141773321]
Retrieval-augmented generation (RAG) has emerged as a critical mechanism in contemporary NLP to support Large Language Models (LLMs) in systematically accessing richer factual context.
Recent studies have shown that LLMs still struggle to critically analyse RAG-based in-context information, a limitation that may lead to incorrect inferences and hallucinations.
In this paper, we investigate how to elicit critical reasoning in RAG via contrastive explanations.
arXiv Detail & Related papers (2024-10-30T10:11:53Z) - Plan*RAG: Efficient Test-Time Planning for Retrieval Augmented Generation [20.5047654554575]
Plan*RAG is a framework that enables structured multi-hop reasoning in retrieval-augmented generation (RAG)<n>Plan*RAG consistently achieves improvements over recently proposed methods such as RQ-RAG and Self-RAG.
arXiv Detail & Related papers (2024-10-28T05:35:04Z) - Can We Further Elicit Reasoning in LLMs? Critic-Guided Planning with Retrieval-Augmentation for Solving Challenging Tasks [68.49251303172674]
State-of-the-art large language models (LLMs) exhibit impressive problem-solving capabilities but may struggle with complex reasoning and factual correctness.
Existing methods harness the strengths of chain-of-thought and retrieval-augmented generation (RAG) to decompose a complex problem into simpler steps and apply retrieval to improve factual correctness.
We introduce Critic-guided planning with Retrieval-augmentation, CR-Planner, a novel framework that leverages fine-tuned critic models to guide both reasoning and retrieval processes through planning.
arXiv Detail & Related papers (2024-10-02T11:26:02Z) - Controlling Risk of Retrieval-augmented Generation: A Counterfactual Prompting Framework [77.45983464131977]
We focus on how likely it is that a RAG model's prediction is incorrect, resulting in uncontrollable risks in real-world applications.<n>Our research identifies two critical latent factors affecting RAG's confidence in its predictions.<n>We develop a counterfactual prompting framework that induces the models to alter these factors and analyzes the effect on their answers.
arXiv Detail & Related papers (2024-09-24T14:52:14Z) - Aggregation of Reasoning: A Hierarchical Framework for Enhancing Answer Selection in Large Language Models [84.15513004135576]
Current research enhances the reasoning performance of Large Language Models (LLMs) by sampling multiple reasoning chains and ensembling based on the answer frequency.
This approach fails in scenarios where the correct answers are in the minority.
We introduce a hierarchical reasoning aggregation framework AoR, which selects answers based on the evaluation of reasoning chains.
arXiv Detail & Related papers (2024-05-21T17:12:19Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG)
Self-RAG enhances an LM's quality and factuality through retrieval and self-reflection.
It significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks.
arXiv Detail & Related papers (2023-10-17T18:18:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.