論文の概要: Tiny Robotics Dataset and Benchmark for Continual Object Detection
- arxiv url: http://arxiv.org/abs/2409.16215v2
- Date: Wed, 05 Mar 2025 14:49:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 19:04:37.778995
- Title: Tiny Robotics Dataset and Benchmark for Continual Object Detection
- Title(参考訳): 連続物体検出のためのティニーロボットデータセットとベンチマーク
- Authors: Francesco Pasti, Riccardo De Monte, Davide Dalle Pezze, Gian Antonio Susto, Nicola Bellotto,
- Abstract要約: 小型ロボットプラットフォームにおける物体検出システムの連続学習能力を評価するための新しいベンチマークを提案する。
この結果は,小型ロボットにおける物体検出のための堅牢で効率的な連続学習戦略を開発する上での課題を浮き彫りにしている。
- 参考スコア(独自算出の注目度): 6.4036245876073234
- License:
- Abstract: Detecting objects in mobile robotics is crucial for numerous applications, from autonomous navigation to inspection. However, robots often need to operate in different domains from those they were trained in, requiring them to adjust to these changes. Tiny mobile robots, subject to size, power, and computational constraints, encounter even more difficulties in running and adapting these algorithms. Such adaptability, though, is crucial for real-world deployment, where robots must operate effectively in dynamic and unpredictable settings. In this work, we introduce a novel benchmark to evaluate the continual learning capabilities of object detection systems in tiny robotic platforms. Our contributions include: (i) Tiny Robotics Object Detection~(TiROD), a comprehensive dataset collected using the onboard camera of a small mobile robot, designed to test object detectors across various domains and classes; (ii) a benchmark of different continual learning strategies on this dataset using NanoDet, a lightweight object detector. Our results highlight key challenges in developing robust and efficient continual learning strategies for object detectors in tiny robotics.
- Abstract(参考訳): 移動ロボットにおける物体の検出は、自律的なナビゲーションから検査まで、多数のアプリケーションにとって不可欠である。
しかし、ロボットは訓練されたドメインと異なるドメインで操作する必要がしばしばあり、これらの変更に適応する必要がある。
サイズ、パワー、計算の制約を受ける小さな移動ロボットは、これらのアルゴリズムを実行し、適応するのにさらに困難に直面する。
しかし、そのような適応性は、ロボットが動的で予測不能な環境で効果的に動作しなければならない現実世界の展開にとって不可欠である。
本研究では,小型ロボットプラットフォームにおける物体検出システムの連続学習能力を評価するための新しいベンチマークを提案する。
コントリビューションには以下のものがある。
(i)TiROD(Tiny Robotics Object Detection~)は、小型移動ロボットの搭載カメラを用いて収集された総合的なデータセットで、さまざまなドメインやクラスにわたる物体検出をテストするように設計されている。
(ii)軽量物体検出器であるNanoDetを用いて,このデータセット上での連続学習戦略のベンチマークを行った。
この結果は,小型ロボットにおける物体検出のための堅牢で効率的な連続学習戦略を開発する上での課題を浮き彫りにしている。
関連論文リスト
- Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
微分可能シミュレーションは、システム識別の強力なツールとなっている。
本手法は,オブジェクト自体のデータに頼ることなく,ロボットからの情報を用いてオブジェクト特性を校正する。
低コストなロボットプラットフォームにおける本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-04T20:48:38Z) - A Survey of Embodied Learning for Object-Centric Robotic Manipulation [27.569063968870868]
オブジェクト中心のロボット操作のための身体学習は、AIの急速に発展し、挑戦的な分野である。
データ駆動機械学習とは異なり、具体化学習は環境との物理的相互作用を通じてロボット学習に焦点を当てる。
論文 参考訳(メタデータ) (2024-08-21T11:32:09Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
本稿では,活発な探索と不確実性を考慮した展開を橋渡しするモデルベース強化学習フレームワークを提案する。
探索と展開の対立する2つのタスクは、最先端のサンプリングベースのMPCによって最適化されている。
自動運転車と車輪付きロボットの両方で実験を行い、探索と展開の両方に有望な結果を示します。
論文 参考訳(メタデータ) (2023-05-20T17:20:12Z) - RT-1: Robotics Transformer for Real-World Control at Scale [98.09428483862165]
我々は,有望なスケーラブルなモデル特性を示す,ロボティクストランスフォーマーと呼ばれるモデルクラスを提示する。
実世界の課題を遂行する実ロボットの大規模データ収集に基づいて,様々なモデルクラスと,データサイズ,モデルサイズ,データの多様性の関数として一般化する能力について検証した。
論文 参考訳(メタデータ) (2022-12-13T18:55:15Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
本稿では,物理に基づくメタバース合成による視覚駆動型ロボットグルーピングのための大規模ベンチマークデータセットを提案する。
提案するデータセットには,10万の画像と25種類のオブジェクトが含まれている。
また,オブジェクト検出とセグメンテーション性能を評価するためのデータセットとともに,新しいレイアウト重み付け性能指標を提案する。
論文 参考訳(メタデータ) (2021-12-29T17:23:24Z) - Domain and Modality Gaps for LiDAR-based Person Detection on Mobile
Robots [91.01747068273666]
本稿では,移動ロボットのシナリオに着目した既存のLiDAR人物検出装置について検討する。
実験は3Dと2D LiDARのセンサー間のモダリティのギャップだけでなく、運転と移動ロボットのシナリオ間の領域ギャップを回避している。
その結果、LiDARに基づく人物検出の実践的な洞察を与え、関連する移動ロボットの設計と応用に関する情報決定を容易にする。
論文 参考訳(メタデータ) (2021-06-21T16:35:49Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
強化学習手法は、重要な性能を達成できるが、同じロボットプラットフォームで収集される大量のトレーニングデータを必要とする。
私たちはそれを、さまざまなロボットプラットフォームで共有される共通の構造を捉えるモデルを見つけることを目標とする、数ショットのメタラーニング問題として定式化します。
我々は,400個のロボットを用いて,実ロボットピッキング作業とシミュレーションリーチの枠組みを実験的に評価した。
論文 参考訳(メタデータ) (2021-03-05T14:16:20Z) - Integrated Benchmarking and Design for Reproducible and Accessible
Evaluation of Robotic Agents [61.36681529571202]
本稿では,開発とベンチマークを統合した再現性ロボット研究の新しい概念について述べる。
このセットアップの中心的なコンポーネントの1つはDuckietown Autolabであり、これは比較的低コストで再現可能な標準化されたセットアップである。
本研究では,インフラを用いて実施した実験の再現性を解析し,ロボットのハードウェアや遠隔実験室間でのばらつきが低いことを示す。
論文 参考訳(メタデータ) (2020-09-09T15:31:29Z) - Real-Time Object Detection and Recognition on Low-Compute Humanoid
Robots using Deep Learning [0.12599533416395764]
本稿では、複数の低計算NAOロボットがカメラビューにおける物体のリアルタイム検出、認識、位置決めを行うことを可能にする新しいアーキテクチャについて述べる。
オブジェクト検出と局所化のためのアルゴリズムは,複数のシナリオにおける屋内実験に基づくYOLOv3の実証的な修正である。
このアーキテクチャは、カメラフィードからニューラルネットにリアルタイムフレームを供給し、その結果を使ってロボットを誘導する効果的なエンドツーエンドパイプラインも備えている。
論文 参考訳(メタデータ) (2020-01-20T05:24:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。