論文の概要: A fast and sound tagging method for discontinuous named-entity recognition
- arxiv url: http://arxiv.org/abs/2409.16243v1
- Date: Tue, 24 Sep 2024 17:07:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 05:07:38.045045
- Title: A fast and sound tagging method for discontinuous named-entity recognition
- Title(参考訳): 不連続な匿名性認識のための高速かつ音のタギング手法
- Authors: Caio Corro,
- Abstract要約: 不連続なエンティティ認識のための新しいタグ付け方式を提案する。
我々は、有限状態オートマトンを辺と最大の両方の後方推論に頼っている。
バイオメディカル領域における3つの英語データセットに対するアプローチを評価した。
- 参考スコア(独自算出の注目度): 8.48487186427764
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce a novel tagging scheme for discontinuous named entity recognition based on an explicit description of the inner structure of discontinuous mentions. We rely on a weighted finite state automaton for both marginal and maximum a posteriori inference. As such, our method is sound in the sense that (1) well-formedness of predicted tag sequences is ensured via the automaton structure and (2) there is an unambiguous mapping between well-formed sequences of tags and (discontinuous) mentions. We evaluate our approach on three English datasets in the biomedical domain, and report comparable results to state-of-the-art while having a way simpler and faster model.
- Abstract(参考訳): 本稿では,不連続な記述の内部構造を明示的に記述し,不連続なエンティティ認識のための新しいタグ付け手法を提案する。
我々は、有限状態オートマトンを辺と最大の両方の後方推論に頼っている。
そこで本手法は,(1) 予測されたタグ列の整形性はオートマトン構造によって保証され,(2) 整形されたタグ列と(不連続な)言及との間にはあいまいなマッピングが存在するという意味で健全である。
バイオメディカル領域における3つの英語データセットに対するアプローチを評価し、よりシンプルで高速なモデルで、最先端技術に匹敵する結果を報告した。
関連論文リスト
- SemSim: Revisiting Weak-to-Strong Consistency from a Semantic Similarity Perspective for Semi-supervised Medical Image Segmentation [18.223854197580145]
医用画像分割のための半教師付き学習(SSL)は難しいが、非常に実践的な課題である。
セムシム(SemSim)という名前のFixMatchに基づく新しいフレームワークを提案する。
SemSimは3つの公開セグメンテーションベンチマークで最先端の手法よりも一貫した改善をもたらすことを示す。
論文 参考訳(メタデータ) (2024-10-17T12:31:37Z) - Localizing Factual Inconsistencies in Attributable Text Generation [91.981439746404]
本稿では,帰属可能なテキスト生成における事実の不整合をローカライズするための新しい形式であるQASemConsistencyを紹介する。
まず,人間のアノテーションに対するQASemConsistency法の有効性を示す。
そこで我々は,局所的な事実の不整合を自動的に検出するいくつかの手法を実装した。
論文 参考訳(メタデータ) (2024-10-09T22:53:48Z) - Self-consistent context aware conformer transducer for speech recognition [0.06008132390640294]
ニューラルネットワークアーキテクチャにおいて、再帰的なデータフローを順応的に処理する新しいニューラルネットワークモジュールを導入する。
本手法は, 単語誤り率に悪影響を及ぼすことなく, 稀な単語の認識精度を向上させる。
その結果,両手法の組み合わせにより,まれな単語を最大4.5倍の精度で検出できることが判明した。
論文 参考訳(メタデータ) (2024-02-09T18:12:11Z) - Semantic Connectivity-Driven Pseudo-labeling for Cross-domain
Segmentation [89.41179071022121]
自己学習はドメイン間セマンティックセグメンテーションにおいて一般的なアプローチである。
本稿ではセマンティック・コネクティビティ駆動の擬似ラベル方式を提案する。
このアプローチは、接続レベルにおいて擬似ラベルを定式化し、構造的および低雑音のセマンティクスの学習を容易にする。
論文 参考訳(メタデータ) (2023-12-11T12:29:51Z) - Biomedical Named Entity Recognition via Dictionary-based Synonym
Generalization [51.89486520806639]
本研究では,入力テキストに含まれる生物医学的概念をスパンベース予測を用いて認識する,新しいSynGenフレームワークを提案する。
提案手法を広範囲のベンチマークで広範囲に評価し,SynGenが従来の辞書ベースモデルよりも顕著なマージンで優れていることを確認した。
論文 参考訳(メタデータ) (2023-05-22T14:36:32Z) - BEST: BERT Pre-Training for Sign Language Recognition with Coupling
Tokenization [135.73436686653315]
我々は、BERTの事前学習の成功を活用し、手話認識(SLR)モデルを肥大化させるために、ドメイン固有の統計モデルを構築している。
手と体が手話表現の優位性を考えると、それらを三重奏単位として整理し、トランスフォーマーのバックボーンに供給する。
劣化した入力シーケンスからマスク三重項ユニットを再構成して事前学習を行う。
意味的ジェスチャー/身体状態を表すポーズ三重奏ユニットから離散擬似ラベルを適応的に抽出する。
論文 参考訳(メタデータ) (2023-02-10T06:23:44Z) - AutoTriggER: Label-Efficient and Robust Named Entity Recognition with
Auxiliary Trigger Extraction [54.20039200180071]
我々は,エンティティトリガの自動生成と活用によるNER性能向上のための新しいフレームワークを提案する。
筆者らのフレームワークは,ポストホックな説明を活用して合理的な知識を生成し,埋め込み手法を用いてモデルの事前知識を強化する。
AutoTriggERは強力なラベル効率を示し、目に見えないエンティティを一般化し、RoBERTa-CRFベースラインを平均0.5F1ポイント上回る性能を持つ。
論文 参考訳(メタデータ) (2021-09-10T08:11:56Z) - Semantic Parsing in Task-Oriented Dialog with Recursive Insertion-based
Encoder [6.507504084891086]
本稿では,タスク指向対話における意味解析のための再帰型Insertion-based entity recognition(RINE)手法を提案する。
RINEは,対話型セマンティック解析ベンチマークTOPの低リソース版と高リソース版において,最先端のマッチング精度を実現する。
提案手法は推論時のシーケンス・ツー・シーケンス・モデルよりも2-3.5倍高速である。
論文 参考訳(メタデータ) (2021-09-09T18:23:45Z) - Joint Entity and Relation Canonicalization in Open Knowledge Graphs
using Variational Autoencoders [11.259587284318835]
オープンナレッジグラフの名詞句と関係句は正規化されず、冗長で曖昧な主語関係対象のトリプルが爆発する。
まず、名詞句と関係句の両方の埋め込み表現を生成し、次にクラスタリングアルゴリズムを使用して、埋め込みを機能としてグループ化します。
本研究では,組込みとクラスタ割り当ての両方をエンドツーエンドアプローチで学習する共同モデルであるCUVA(Canonicalizing Using Variational AutoEncoders)を提案する。
論文 参考訳(メタデータ) (2020-12-08T22:58:30Z) - Semi-Supervised Speech Recognition via Graph-based Temporal
Classification [59.58318952000571]
半教師付き学習は自己学習による自動音声認識において有望な結果を示した。
このアプローチの有効性は、主に擬似ラベルの精度に依存する。
N-bestリストの別のASR仮説は、ラベルなしの発話に対してより正確なラベルを提供することができる。
論文 参考訳(メタデータ) (2020-10-29T14:56:56Z) - An Effective Transition-based Model for Discontinuous NER [18.21146856681127]
非連続NERのための汎用的ニューラルエンコーディングを用いた単純かつ効果的な遷移ベースモデルを提案する。
連続的な言及の精度を犠牲にすることなく,不連続な言及を効果的に認識できることを示す。
論文 参考訳(メタデータ) (2020-04-28T12:19:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。