論文の概要: Gen2Act: Human Video Generation in Novel Scenarios enables Generalizable Robot Manipulation
- arxiv url: http://arxiv.org/abs/2409.16283v1
- Date: Tue, 24 Sep 2024 17:57:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 04:57:52.730568
- Title: Gen2Act: Human Video Generation in Novel Scenarios enables Generalizable Robot Manipulation
- Title(参考訳): Gen2Act:新しいシナリオにおけるヒューマンビデオ生成は、汎用的なロボット操作を可能にする
- Authors: Homanga Bharadhwaj, Debidatta Dwibedi, Abhinav Gupta, Shubham Tulsiani, Carl Doersch, Ted Xiao, Dhruv Shah, Fei Xia, Dorsa Sadigh, Sean Kirmani,
- Abstract要約: Gen2Actは、ゼロショットのヒューマンビデオ生成として言語条件の操作をキャストし、生成したビデオに対して単一のポリシーで実行します。
実世界の多様なシナリオにおいて,Gen2Actがロボットデータに存在しないタスクに対して,未知のオブジェクトタイプを操作したり,新たな動作を実行したりすることができることを示す。
- 参考スコア(独自算出の注目度): 74.70013315714336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How can robot manipulation policies generalize to novel tasks involving unseen object types and new motions? In this paper, we provide a solution in terms of predicting motion information from web data through human video generation and conditioning a robot policy on the generated video. Instead of attempting to scale robot data collection which is expensive, we show how we can leverage video generation models trained on easily available web data, for enabling generalization. Our approach Gen2Act casts language-conditioned manipulation as zero-shot human video generation followed by execution with a single policy conditioned on the generated video. To train the policy, we use an order of magnitude less robot interaction data compared to what the video prediction model was trained on. Gen2Act doesn't require fine-tuning the video model at all and we directly use a pre-trained model for generating human videos. Our results on diverse real-world scenarios show how Gen2Act enables manipulating unseen object types and performing novel motions for tasks not present in the robot data. Videos are at https://homangab.github.io/gen2act/
- Abstract(参考訳): ロボット操作ポリシーは、見えない物体の種類や新しい動きを含む新しいタスクにどのように一般化できるか?
本稿では,人間の映像生成を通じてWebデータから動作情報を予測し,生成した映像にロボットのポリシーを付与する手法を提案する。
コストのかかるロボットデータ収集をスケールする代わりに、簡単に利用可能なWebデータに基づいてトレーニングされたビデオ生成モデルを活用して、一般化を実現する方法を示す。
我々のアプローチであるGen2Actは、ゼロショットのヒューマンビデオ生成として言語条件の操作を行い、生成したビデオに対して単一のポリシーで実行します。
このポリシーをトレーニングするために、ビデオ予測モデルがトレーニングされたものと比較して、ロボットのインタラクションデータを桁違いに少なくする。
Gen2Actはビデオモデルを微調整する必要はなく、人間のビデオを生成するためにトレーニング済みのモデルを直接使用します。
実世界の多様なシナリオにおいて,Gen2Actがロボットデータに存在しないタスクに対して,未知のオブジェクトタイプを操作したり,新たな動作を実行したりすることができることを示す。
ビデオはhttps://homangab.github.io/gen2act/にある。
関連論文リスト
- Manipulate-Anything: Automating Real-World Robots using Vision-Language Models [47.16659229389889]
実世界のロボット操作のためのスケーラブルな自動生成手法であるManipulate-Anythingを提案する。
Manipulate-Anythingは、特権のある状態情報や手書きのスキルなしで現実世界の環境で動作でき、静的オブジェクトを操作できる。
論文 参考訳(メタデータ) (2024-06-27T06:12:01Z) - Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
我々は、ゼロショットロボット操作を可能にする汎用的な目標条件ポリシーを学習することを目指している。
私たちのフレームワークであるTrack2Actは、ゴールに基づいて将来のタイムステップで画像内のポイントがどのように動くかを予測する。
学習したトラック予測を残留ポリシーと組み合わせることで,多種多様な汎用ロボット操作が可能となることを示す。
論文 参考訳(メタデータ) (2024-05-02T17:56:55Z) - Vid2Robot: End-to-end Video-conditioned Policy Learning with Cross-Attention Transformers [36.497624484863785]
Vid2Robotは、人間のビデオで操作タスクを入力として表現し、ロボットアクションを生成する、エンドツーエンドのビデオ条件付きポリシーである。
我々のモデルは、ビデオから人間とロボットのアクションの統一表現を学習するために、プロンプトロボット軌道対の大規模なデータセットを用いて訓練されている。
実世界のロボット上でのVid2Robotの評価を行い、人間のプロンプトビデオを用いた場合、BC-Zよりも20%以上の改善が見られた。
論文 参考訳(メタデータ) (2024-03-19T17:47:37Z) - Learning an Actionable Discrete Diffusion Policy via Large-Scale Actionless Video Pre-Training [69.54948297520612]
ジェネラリストの具体化エージェントを学ぶことは、主にアクションラベル付きロボットデータセットの不足に起因して、課題を提起する。
これらの課題に対処するための新しい枠組みを導入し、人間のビデオにおける生成前トレーニングと、少数のアクションラベル付きロボットビデオのポリシー微調整を組み合わせるために、統一された離散拡散を利用する。
提案手法は, 従来の最先端手法と比較して, 高忠実度な今後の計画ビデオを生成し, 細調整されたポリシーを強化する。
論文 参考訳(メタデータ) (2024-02-22T09:48:47Z) - Towards Generalizable Zero-Shot Manipulation via Translating Human
Interaction Plans [58.27029676638521]
我々は、人間の受動的ビデオが、そのようなジェネラリストロボットを学習するための豊富なデータ源であることを示す。
我々は、シーンの現在の画像とゴール画像から将来の手やオブジェクトの設定を予測する人間の計画予測器を学習する。
学習システムは、40個のオブジェクトに一般化する16以上の操作スキルを実現できることを示す。
論文 参考訳(メタデータ) (2023-12-01T18:54:12Z) - Learning Video-Conditioned Policies for Unseen Manipulation Tasks [83.2240629060453]
ビデオ条件付きポリシー学習は、以前は目に見えないタスクの人間のデモをロボット操作スキルにマッピングする。
我々は,現在のシーン観察と対象課題のビデオから適切なアクションを生成するためのポリシーを学習する。
われわれは,多タスクロボット操作環境の課題と,技術面における性能の面から,そのアプローチを検証した。
論文 参考訳(メタデータ) (2023-05-10T16:25:42Z) - Zero-Shot Robot Manipulation from Passive Human Videos [59.193076151832145]
我々は,人間の映像からエージェント非依存の行動表現を抽出するフレームワークを開発した。
我々の枠組みは、人間の手の動きを予測することに基づいている。
トレーニングされたモデルゼロショットを物理ロボット操作タスクにデプロイする。
論文 参考訳(メタデータ) (2023-02-03T21:39:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。