Knowledge from Large-Scale Protein Contact Prediction Models Can Be
Transferred to the Data-Scarce RNA Contact Prediction Task
- URL: http://arxiv.org/abs/2302.06120v3
- Date: Fri, 19 Jan 2024 04:13:33 GMT
- Title: Knowledge from Large-Scale Protein Contact Prediction Models Can Be
Transferred to the Data-Scarce RNA Contact Prediction Task
- Authors: Yiren Jian and Chongyang Gao and Chen Zeng and Yunjie Zhao and Soroush
Vosoughi
- Abstract summary: We find that a protein-coevolution Transformer-based deep neural network can be transferred to the RNA contact prediction task.
Experiments confirm that RNA contact prediction through transfer learning is greatly improved.
Our findings indicate that the learned structural patterns of proteins can be transferred to RNAs, opening up potential new avenues for research.
- Score: 40.051834115537474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: RNA, whose functionality is largely determined by its structure, plays an
important role in many biological activities. The prediction of pairwise
structural proximity between each nucleotide of an RNA sequence can
characterize the structural information of the RNA. Historically, this problem
has been tackled by machine learning models using expert-engineered features
and trained on scarce labeled datasets. Here, we find that the knowledge
learned by a protein-coevolution Transformer-based deep neural network can be
transferred to the RNA contact prediction task. As protein datasets are orders
of magnitude larger than those for RNA contact prediction, our findings and the
subsequent framework greatly reduce the data scarcity bottleneck. Experiments
confirm that RNA contact prediction through transfer learning using a publicly
available protein model is greatly improved. Our findings indicate that the
learned structural patterns of proteins can be transferred to RNAs, opening up
potential new avenues for research.
Related papers
- Character-level Tokenizations as Powerful Inductive Biases for RNA Foundational Models [0.0]
understanding and predicting RNA behavior is a challenge due to the complexity of RNA structures and interactions.
Current RNA models have yet to match the performance observed in the protein domain.
ChaRNABERT is able to reach state-of-the-art performance on several tasks in established benchmarks.
arXiv Detail & Related papers (2024-11-05T21:56:16Z) - RNA-GPT: Multimodal Generative System for RNA Sequence Understanding [6.611255836269348]
RNAs are essential molecules that carry genetic information vital for life.
Despite this importance, RNA research is often hindered by the vast literature available on the topic.
We introduce RNA-GPT, a multi-modal RNA chat model designed to simplify RNA discovery.
arXiv Detail & Related papers (2024-10-29T06:19:56Z) - Predicting Distance matrix with large language models [1.8855270809505869]
RNA structure prediction remains a significant challenge due to data limitations.
Traditional methods such as nuclear magnetic resonance spectroscopy, Xray crystallography, and electron microscopy are expensive and time consuming.
Distance maps provide a simplified representation of spatial constraints between nucleotides, capturing essential relationships without requiring a full 3D model.
arXiv Detail & Related papers (2024-09-24T10:28:55Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
We introduce the first comprehensive RNA benchmark BEACON (textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models).
First, BEACON comprises 13 distinct tasks derived from extensive previous work covering structural analysis, functional studies, and engineering applications.
Second, we examine a range of models, including traditional approaches like CNNs, as well as advanced RNA foundation models based on language models, offering valuable insights into the task-specific performances of these models.
Third, we investigate the vital RNA language model components
arXiv Detail & Related papers (2024-06-14T19:39:19Z) - RNAFlow: RNA Structure & Sequence Design via Inverse Folding-Based Flow Matching [7.600990806121113]
RNAFlow is a flow matching model for protein-conditioned RNA sequence-structure design.
Its denoising network integrates an RNA inverse folding model and a pre-trained RosettaFold2NA network for generation of RNA sequences and structures.
arXiv Detail & Related papers (2024-05-29T05:10:25Z) - RiNALMo: General-Purpose RNA Language Models Can Generalize Well on Structure Prediction Tasks [1.1764999317813143]
We introduce RiboNucleic Acid Language Model (RiNALMo) to unveil the hidden code of RNA.
RiNALMo is the largest RNA language model to date, with 650M parameters pre-trained on 36M non-coding RNA sequences.
arXiv Detail & Related papers (2024-02-29T14:50:58Z) - scHyena: Foundation Model for Full-Length Single-Cell RNA-Seq Analysis
in Brain [46.39828178736219]
We introduce scHyena, a foundation model designed to address these challenges and enhance the accuracy of scRNA-seq analysis in the brain.
scHyena is equipped with a linear adaptor layer, the positional encoding via gene-embedding, and a bidirectional Hyena operator.
This enables us to process full-length scRNA-seq data without losing any information from the raw data.
arXiv Detail & Related papers (2023-10-04T10:30:08Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
This study aims to systematically construct a data-driven RNA design pipeline.
We crafted a benchmark dataset and designed a comprehensive structural modeling approach to represent the complex RNA tertiary structure.
We incorporated extracted secondary structures with base pairs as prior knowledge to facilitate the RNA design process.
arXiv Detail & Related papers (2023-01-25T17:19:49Z) - E2Efold-3D: End-to-End Deep Learning Method for accurate de novo RNA 3D
Structure Prediction [46.38735421190187]
We develop the first end-to-end deep learning approach, E2Efold-3D, to accurately perform the textitde novo RNA structure prediction.
Several novel components are proposed to overcome the data scarcity, such as a fully-differentiable end-to-end pipeline, secondary structure-assisted self-distillation, and parameter-efficient backbone formulation.
arXiv Detail & Related papers (2022-07-04T17:15:35Z) - Transfer Learning for Protein Structure Classification at Low Resolution [124.5573289131546]
We show that it is possible to make accurate ($geq$80%) predictions of protein class and architecture from structures determined at low ($leq$3A) resolution.
We provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function.
arXiv Detail & Related papers (2020-08-11T15:01:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.