論文の概要: Improving Intersession Reproducibility for Forearm Ultrasound based Hand Gesture Classification through an Incremental Learning Approach
- arxiv url: http://arxiv.org/abs/2409.16415v1
- Date: Tue, 24 Sep 2024 19:26:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 08:31:10.100932
- Title: Improving Intersession Reproducibility for Forearm Ultrasound based Hand Gesture Classification through an Incremental Learning Approach
- Title(参考訳): インクリメンタルラーニングによる前腕超音波を用いた手のジェスチャー分類における間欠的再現性の改善
- Authors: Keshav Bimbraw, Jack Rothenberg, Haichong K. Zhang,
- Abstract要約: 前腕の超音波画像は、人間のマシンインタフェースを開発するための手の動きを分類するために使用することができる。
従来,1つの被験者に超音波を用いたジェスチャー分類を行ったが,評価前にプローブの除去は行わなかった。
本研究は,超音波による手動作分類の微調整による漸進的な学習が,記憶,処理能力,時間を節約しながら精度を向上させることを示す。
- 参考スコア(独自算出の注目度): 2.1301560294088318
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ultrasound images of the forearm can be used to classify hand gestures towards developing human machine interfaces. In our previous work, we have demonstrated gesture classification using ultrasound on a single subject without removing the probe before evaluation. This has limitations in usage as once the probe is removed and replaced, the accuracy declines since the classifier performance is sensitive to the probe location on the arm. In this paper, we propose training a model on multiple data collection sessions to create a generalized model, utilizing incremental learning through fine tuning. Ultrasound data was acquired for 5 hand gestures within a session (without removing and putting the probe back on) and across sessions. A convolutional neural network (CNN) with 5 cascaded convolution layers was used for this study. A pre-trained CNN was fine tuned with the convolution blocks acting as a feature extractor, and the parameters of the remaining layers updated in an incremental fashion. Fine tuning was done using different session splits within a session and between multiple sessions. We found that incremental fine tuning can help enhance classification accuracy with more fine tuning sessions. After 2 fine tuning sessions for each experiment, we found an approximate 10% increase in classification accuracy. This work demonstrates that incremental learning through fine tuning on ultrasound based hand gesture classification can be used improves accuracy while saving storage, processing power, and time. It can be expanded to generalize between multiple subjects and towards developing personalized wearable devices.
- Abstract(参考訳): 前腕の超音波画像は、人間のマシンインタフェースを開発するための手の動きを分類するために使用することができる。
前報では,1つの被験者に超音波を用いたジェスチャー分類を,評価前にプローブを除去することなく実施した。
プローブが取り外され、交換されると、分類器の性能が腕のプローブ位置に敏感であるため、精度が低下する。
本稿では,複数のデータ収集セッションのモデルをトレーニングして,微調整による漸進的学習を生かし,一般化されたモデルを作成することを提案する。
超音波データは、セッション内(プローブを取り外さずに)とセッション間の5つの手ジェスチャーのために取得された。
本研究では, 5層の畳み込み層を有する畳み込みニューラルネットワーク(CNN)を用いた。
事前トレーニングされたCNNは、特徴抽出器として機能する畳み込みブロックを微調整し、残りのレイヤのパラメータを漸進的に更新した。
セッション内と複数のセッション間で異なるセッションスプリットを使用して、微調整が行われた。
インクリメンタルな微調整は、より詳細な微調整セッションで分類精度を高めるのに役立つことがわかった。
実験毎に2回の微調整を行った結果,分類精度はおよそ10%向上した。
本研究は,超音波による手動作分類の微調整による漸進的な学習が,記憶,処理能力,時間を節約しながら精度を向上させることを示す。
複数の被験者の間で一般化し、パーソナライズされたウェアラブルデバイスを開発するために拡張することができる。
関連論文リスト
- AFEN: Respiratory Disease Classification using Ensemble Learning [2.524195881002773]
本稿では、畳み込みニューラルネットワーク(CNN)とXGBoostを利用するモデルであるAFEN(Audio Feature Learning)を提案する。
我々は、データの健全な属性を提供し、正確な分類を可能にする、巧妙に選択されたオーディオ特徴の組み合わせを使用する。
AFENがPrecisionとRecallをメトリクスとして利用し、トレーニング時間を60%削減し、新たな最先端技術の設定を実証的に検証した。
論文 参考訳(メタデータ) (2024-05-08T23:50:54Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - Utilizing synthetic training data for the supervised classification of
rat ultrasonic vocalizations [0.0]
ミューリンは120kHzの周波数で超音波発声(USV)を発生させる。
これらの呼び出しは社会的行動において重要であるため、その分析は声道コミュニケーションの機能とその機能に関する洞察を与えることができる。
我々は、ラットのUSVを含むオーディオにおいて、訓練された人間の2つの畳み込みニューラルネットワーク(CNN)、DeepSqueak、VocalMatの検出と分類性能を比較した。
論文 参考訳(メタデータ) (2023-03-03T03:17:45Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
深層学習のためのクラス内適応拡張(IAA)フレームワークを提案する。
クラスごとのクラス内変動を合理的に推定し, 適応型合成試料を生成し, 硬質試料の採掘を支援する。
本手法は,検索性能の最先端手法を3%~6%向上させる。
論文 参考訳(メタデータ) (2022-11-29T14:52:38Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
GAN(Generative Adversarial Networks)は通常、限られたトレーニングデータが利用できる場合、過度に適合する。
ScoreMixは、様々な画像合成タスクのための、新しくスケーラブルなデータ拡張手法である。
論文 参考訳(メタデータ) (2022-10-27T02:55:15Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - Class-incremental Learning using a Sequence of Partial Implicitly
Regularized Classifiers [0.0]
クラス増分学習では、トレーニングデータ全体にアクセスすることなく、複数のクラスを順次学習することが目的である。
CIFAR100データセットの実験では、提案手法がSOTAの性能を大きなマージンで向上させることが示された。
論文 参考訳(メタデータ) (2021-04-04T10:02:45Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
現在のCNNベースの検出器は、メソッド固有の色テクスチャに過度に適合するため、一般化に失敗する傾向にある。
フェースフォージェリ検出に高周波雑音を用いることを提案する。
1つは、複数のスケールで高周波ノイズを抽出するマルチスケールの高周波特徴抽出モジュールである。
2つ目は、低レベルRGB特徴抽出器を導く残差誘導空間注意モジュールで、新しい視点からフォージェリートレースにもっと集中する。
論文 参考訳(メタデータ) (2021-03-23T08:19:21Z) - Applications of Koopman Mode Analysis to Neural Networks [52.77024349608834]
我々は,ニューラルネットワークのトレーニング過程を,高次元の重み空間に作用する力学系と考える。
アーキテクチャに必要なレイヤ数を決定するために、Koopmanスペクトルをどのように利用できるかを示す。
また、Koopmanモードを使えば、ネットワークを選択的にプーンしてトレーニング手順を高速化できることを示す。
論文 参考訳(メタデータ) (2020-06-21T11:00:04Z) - Effect of Analysis Window and Feature Selection on Classification of
Hand Movements Using EMG Signal [0.20999222360659603]
近年,パターン認識(PR)に基づく筋電制御の研究は,機械学習分類器の助けを借りて有望な結果を示した。
複数のクラスの動きと直感的な制御を提供することで、日常的な生活運動を行うために切断対象に電力を供給することができる。
我々は,手の動きの分類精度を向上させるために,効率的なデータ前処理と最適な特徴選択が有効であることを示す。
論文 参考訳(メタデータ) (2020-02-02T19:03:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。