Lessons for Editors of AI Incidents from the AI Incident Database
- URL: http://arxiv.org/abs/2409.16425v1
- Date: Tue, 24 Sep 2024 19:46:58 GMT
- Title: Lessons for Editors of AI Incidents from the AI Incident Database
- Authors: Kevin Paeth, Daniel Atherton, Nikiforos Pittaras, Heather Frase, Sean McGregor,
- Abstract summary: The AI Incident Database (AIID) is a project that catalogs AI incidents and supports further research by providing a platform to classify incidents.
This study reviews the AIID's dataset of 750+ AI incidents and two independent ambiguities applied to these incidents to identify common challenges to indexing and analyzing AI incidents.
We report mitigations to make incident processes more robust to uncertainty related to cause, extent of harm, severity, or technical details of implicated systems.
- Score: 2.5165775267615205
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: As artificial intelligence (AI) systems become increasingly deployed across the world, they are also increasingly implicated in AI incidents - harm events to individuals and society. As a result, industry, civil society, and governments worldwide are developing best practices and regulations for monitoring and analyzing AI incidents. The AI Incident Database (AIID) is a project that catalogs AI incidents and supports further research by providing a platform to classify incidents for different operational and research-oriented goals. This study reviews the AIID's dataset of 750+ AI incidents and two independent taxonomies applied to these incidents to identify common challenges to indexing and analyzing AI incidents. We find that certain patterns of AI incidents present structural ambiguities that challenge incident databasing and explore how epistemic uncertainty in AI incident reporting is unavoidable. We therefore report mitigations to make incident processes more robust to uncertainty related to cause, extent of harm, severity, or technical details of implicated systems. With these findings, we discuss how to develop future AI incident reporting practices.
Related papers
- Causal Responsibility Attribution for Human-AI Collaboration [62.474732677086855]
This paper presents a causal framework using Structural Causal Models (SCMs) to systematically attribute responsibility in human-AI systems.
Two case studies illustrate the framework's adaptability in diverse human-AI collaboration scenarios.
arXiv Detail & Related papers (2024-11-05T17:17:45Z) - A Survey on Offensive AI Within Cybersecurity [1.8206461789819075]
This survey paper on offensive AI will comprehensively cover various aspects related to attacks against and using AI systems.
It will delve into the impact of offensive AI practices on different domains, including consumer, enterprise, and public digital infrastructure.
The paper will explore adversarial machine learning, attacks against AI models, infrastructure, and interfaces, along with offensive techniques like information gathering, social engineering, and weaponized AI.
arXiv Detail & Related papers (2024-09-26T17:36:22Z) - AI for All: Identifying AI incidents Related to Diversity and Inclusion [5.364403920214549]
This study identifies and understanding D&I issues within AI systems through a manual analysis of AI incident databases.
Almost half of the analyzed AI incidents are related to D&I, with a notable predominance of racial, gender, and age discrimination.
arXiv Detail & Related papers (2024-07-19T08:54:56Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - The AI Incident Database as an Educational Tool to Raise Awareness of AI
Harms: A Classroom Exploration of Efficacy, Limitations, & Future
Improvements [14.393183391019292]
The AI Incident Database (AIID) is one of the few attempts at offering a relatively comprehensive database indexing prior instances of harms or near harms stemming from the deployment of AI technologies in the real world.
This study assesses the effectiveness of AIID as an educational tool to raise awareness regarding the prevalence and severity of AI harms in socially high-stakes domains.
arXiv Detail & Related papers (2023-10-10T02:55:09Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Indexing AI Risks with Incidents, Issues, and Variants [5.8010446129208155]
backlog of "issues" that do not meet database's incident ingestion criteria have accumulated.
Similar to databases in aviation and computer security, the AIID proposes to adopt a two-tiered system for indexing AI incidents.
arXiv Detail & Related papers (2022-11-18T17:32:19Z) - A taxonomic system for failure cause analysis of open source AI
incidents [6.85316573653194]
This work demonstrates how to apply expert knowledge on the population of incidents in the AI Incident Database (AIID) to infer potential and likely technical causative factors that contribute to reported failures and harms.
We present early work on a taxonomic system that covers a cascade of interrelated incident factors, from system goals (nearly always known) to methods / technologies (knowable in many cases) and technical failure causes (subject to expert analysis) of the implicated systems.
arXiv Detail & Related papers (2022-11-14T11:21:30Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
The workshop will focus on the application of AI to problems in cyber security.
Cyber systems generate large volumes of data, utilizing this effectively is beyond human capabilities.
arXiv Detail & Related papers (2022-02-28T18:27:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.