Who is Responsible When AI Fails? Mapping Causes, Entities, and Consequences of AI Privacy and Ethical Incidents
- URL: http://arxiv.org/abs/2504.01029v1
- Date: Fri, 28 Mar 2025 21:57:38 GMT
- Title: Who is Responsible When AI Fails? Mapping Causes, Entities, and Consequences of AI Privacy and Ethical Incidents
- Authors: Hilda Hadan, Reza Hadi Mogavi, Leah Zhang-Kennedy, Lennart E. Nacke,
- Abstract summary: We analyzed 202 real-world AI privacy and ethical incidents.<n>This produced a taxonomy that classifies incident types across AI lifecycle stages.<n>It accounts for contextual factors such as causes, responsible entities, disclosure sources, and impacts.
- Score: 29.070947259551478
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rapid growth of artificial intelligence (AI) technologies has changed decision-making in many fields. But, it has also raised major privacy and ethical concerns. However, many AI incidents taxonomies and guidelines for academia, industry, and government lack grounding in real-world incidents. We analyzed 202 real-world AI privacy and ethical incidents. This produced a taxonomy that classifies incident types across AI lifecycle stages. It accounts for contextual factors such as causes, responsible entities, disclosure sources, and impacts. Our findings show insufficient incident reporting from AI developers and users. Many incidents are caused by poor organizational decisions and legal non-compliance. Only a few legal actions and corrective measures exist, while risk-mitigation efforts are limited. Our taxonomy contributes a structured approach in reporting of future AI incidents. Our findings demonstrate that current AI governance frameworks are inadequate. We urgently need child-specific protections and AI policies on social media. They must moderate and reduce the spread of harmful AI-generated content. Our research provides insights for policymakers and practitioners, which lets them design ethical AI. It also support AI incident detection and risk management. Finally, it guides AI policy development. Improved policies will protect people from harmful AI applications and support innovation in AI systems.
Related papers
- Position: A taxonomy for reporting and describing AI security incidents [57.98317583163334]
We argue that specific are required to describe and report security incidents of AI systems.<n>Existing frameworks for either non-AI security or generic AI safety incident reporting are insufficient to capture the specific properties of AI security.
arXiv Detail & Related papers (2024-12-19T13:50:26Z) - A Survey on Offensive AI Within Cybersecurity [1.8206461789819075]
This survey paper on offensive AI will comprehensively cover various aspects related to attacks against and using AI systems.
It will delve into the impact of offensive AI practices on different domains, including consumer, enterprise, and public digital infrastructure.
The paper will explore adversarial machine learning, attacks against AI models, infrastructure, and interfaces, along with offensive techniques like information gathering, social engineering, and weaponized AI.
arXiv Detail & Related papers (2024-09-26T17:36:22Z) - Lessons for Editors of AI Incidents from the AI Incident Database [2.5165775267615205]
The AI Incident Database (AIID) is a project that catalogs AI incidents and supports further research by providing a platform to classify incidents.
This study reviews the AIID's dataset of 750+ AI incidents and two independent ambiguities applied to these incidents to identify common challenges to indexing and analyzing AI incidents.
We report mitigations to make incident processes more robust to uncertainty related to cause, extent of harm, severity, or technical details of implicated systems.
arXiv Detail & Related papers (2024-09-24T19:46:58Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - AI Ethics Issues in Real World: Evidence from AI Incident Database [0.6091702876917279]
We identify 13 application areas which often see unethical use of AI, with intelligent service robots, language/vision models and autonomous driving taking the lead.
Ethical issues appear in 8 different forms, from inappropriate use and racial discrimination, to physical safety and unfair algorithm.
arXiv Detail & Related papers (2022-06-15T16:25:57Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
The workshop will focus on the application of AI to problems in cyber security.
Cyber systems generate large volumes of data, utilizing this effectively is beyond human capabilities.
arXiv Detail & Related papers (2022-02-28T18:27:41Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - The Role of Social Movements, Coalitions, and Workers in Resisting
Harmful Artificial Intelligence and Contributing to the Development of
Responsible AI [0.0]
Coalitions in all sectors are acting worldwide to resist hamful applications of AI.
There are biased, wrongful, and disturbing assumptions embedded in AI algorithms.
Perhaps one of the greatest contributions of AI will be to make us understand how important human wisdom truly is in life on earth.
arXiv Detail & Related papers (2021-07-11T18:51:29Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Socially Responsible AI Algorithms: Issues, Purposes, and Challenges [31.382000425295885]
Technologists and AI researchers have a responsibility to develop trustworthy AI systems.
To build long-lasting trust between AI and human beings, we argue that the key is to think beyond algorithmic fairness.
arXiv Detail & Related papers (2021-01-01T17:34:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.