Source-Free Domain Adaptation for YOLO Object Detection
- URL: http://arxiv.org/abs/2409.16538v1
- Date: Wed, 25 Sep 2024 01:22:10 GMT
- Title: Source-Free Domain Adaptation for YOLO Object Detection
- Authors: Simon Varailhon, Masih Aminbeidokhti, Marco Pedersoli, Eric Granger,
- Abstract summary: This paper focuses on domain adaptation techniques for real-world vision systems, particularly for the YOLO family of single-shot detectors.
Our proposed SFDA method - Source-Free YOLO (SF-YOLO) - relies on a teacher-student framework in which the student receives images with a learned, target domain-specific augmentation.
A challenge with self-training using a mean-teacher architecture in the absence of labels is the rapid decline of accuracy due to noisy or drifting pseudo-labels.
- Score: 12.998403995812298
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Source-free domain adaptation (SFDA) is a challenging problem in object detection, where a pre-trained source model is adapted to a new target domain without using any source domain data for privacy and efficiency reasons. Most state-of-the-art SFDA methods for object detection have been proposed for Faster-RCNN, a detector that is known to have high computational complexity. This paper focuses on domain adaptation techniques for real-world vision systems, particularly for the YOLO family of single-shot detectors known for their fast baselines and practical applications. Our proposed SFDA method - Source-Free YOLO (SF-YOLO) - relies on a teacher-student framework in which the student receives images with a learned, target domain-specific augmentation, allowing the model to be trained with only unlabeled target data and without requiring feature alignment. A challenge with self-training using a mean-teacher architecture in the absence of labels is the rapid decline of accuracy due to noisy or drifting pseudo-labels. To address this issue, a teacher-to-student communication mechanism is introduced to help stabilize the training and reduce the reliance on annotated target data for model selection. Despite its simplicity, our approach is competitive with state-of-the-art detectors on several challenging benchmark datasets, even sometimes outperforming methods that use source data for adaptation.
Related papers
- Propensity-driven Uncertainty Learning for Sample Exploration in Source-Free Active Domain Adaptation [19.620523416385346]
Source-free active domain adaptation (SFADA) addresses the challenge of adapting a pre-trained model to new domains without access to source data.
This scenario is particularly relevant in real-world applications where data privacy, storage limitations, or labeling costs are significant concerns.
We propose the Propensity-driven Uncertainty Learning (ProULearn) framework to effectively select more informative samples without frequently requesting human annotations.
arXiv Detail & Related papers (2025-01-23T10:05:25Z) - CLDA-YOLO: Visual Contrastive Learning Based Domain Adaptive YOLO Detector [10.419327930845922]
Unsupervised domain adaptive (UDA) algorithms can markedly enhance the performance of object detectors under conditions of domain shifts.
We present an unsupervised domain adaptive YOLO detector based on visual contrastive learning (CLDA-YOLO)
arXiv Detail & Related papers (2024-12-16T14:25:52Z) - Dynamic Retraining-Updating Mean Teacher for Source-Free Object Detection [8.334498654271371]
Unsupervised domain adaptation (UDA) aims to transfer knowledge from a labeled source domain to an unlabeled target domain.
This study focuses on source-free object detection (SFOD), which adapts a source-trained detector to an unlabeled target domain without using labeled source data.
arXiv Detail & Related papers (2024-07-23T14:12:57Z) - Informative Data Mining for One-Shot Cross-Domain Semantic Segmentation [84.82153655786183]
We propose a novel framework called Informative Data Mining (IDM) to enable efficient one-shot domain adaptation for semantic segmentation.
IDM provides an uncertainty-based selection criterion to identify the most informative samples, which facilitates quick adaptation and reduces redundant training.
Our approach outperforms existing methods and achieves a new state-of-the-art one-shot performance of 56.7%/55.4% on the GTA5/SYNTHIA to Cityscapes adaptation tasks.
arXiv Detail & Related papers (2023-09-25T15:56:01Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection [79.89082006155135]
Unsupervised Domain Adaptation (UDA) is an effective approach to tackle the issue of domain shift.
UDA methods try to align the source and target representations to improve the generalization on the target domain.
The Source-Free Adaptation Domain (SFDA) setting aims to alleviate these concerns by adapting a source-trained model for the target domain without requiring access to the source data.
arXiv Detail & Related papers (2022-03-29T17:50:43Z) - Unsupervised and self-adaptative techniques for cross-domain person
re-identification [82.54691433502335]
Person Re-Identification (ReID) across non-overlapping cameras is a challenging task.
Unsupervised Domain Adaptation (UDA) is a promising alternative, as it performs feature-learning adaptation from a model trained on a source to a target domain without identity-label annotation.
In this paper, we propose a novel UDA-based ReID method that takes advantage of triplets of samples created by a new offline strategy.
arXiv Detail & Related papers (2021-03-21T23:58:39Z) - Source Data-absent Unsupervised Domain Adaptation through Hypothesis
Transfer and Labeling Transfer [137.36099660616975]
Unsupervised adaptation adaptation (UDA) aims to transfer knowledge from a related but different well-labeled source domain to a new unlabeled target domain.
Most existing UDA methods require access to the source data, and thus are not applicable when the data are confidential and not shareable due to privacy concerns.
This paper aims to tackle a realistic setting with only a classification model available trained over, instead of accessing to the source data.
arXiv Detail & Related papers (2020-12-14T07:28:50Z) - Do We Really Need to Access the Source Data? Source Hypothesis Transfer
for Unsupervised Domain Adaptation [102.67010690592011]
Unsupervised adaptationUDA (UDA) aims to leverage the knowledge learned from a labeled source dataset to solve similar tasks in a new unlabeled domain.
Prior UDA methods typically require to access the source data when learning to adapt the model.
This work tackles a practical setting where only a trained source model is available and how we can effectively utilize such a model without source data to solve UDA problems.
arXiv Detail & Related papers (2020-02-20T03:13:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.