Optimized Monte Carlo Tree Search for Enhanced Decision Making in the FrozenLake Environment
- URL: http://arxiv.org/abs/2409.16620v1
- Date: Wed, 25 Sep 2024 05:04:53 GMT
- Title: Optimized Monte Carlo Tree Search for Enhanced Decision Making in the FrozenLake Environment
- Authors: Esteban Aldana Guerra,
- Abstract summary: Monte Carlo Tree Search (MCTS) is a powerful algorithm for solving complex decision-making problems.
This paper presents an optimized MCTS implementation applied to the FrozenLake environment, a classic reinforcement learning task.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monte Carlo Tree Search (MCTS) is a powerful algorithm for solving complex decision-making problems. This paper presents an optimized MCTS implementation applied to the FrozenLake environment, a classic reinforcement learning task characterized by stochastic transitions. The optimization leverages cumulative reward and visit count tables along with the Upper Confidence Bound for Trees (UCT) formula, resulting in efficient learning in a slippery grid world. We benchmark our implementation against other decision-making algorithms, including MCTS with Policy and Q-Learning, and perform a detailed comparison of their performance. The results demonstrate that our optimized approach effectively maximizes rewards and success rates while minimizing convergence time, outperforming baseline methods, especially in environments with inherent randomness.
Related papers
- LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning [56.273799410256075]
The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path.
The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability.
arXiv Detail & Related papers (2024-10-03T18:12:29Z) - Optimizing Variational Quantum Circuits Using Metaheuristic Strategies in Reinforcement Learning [2.7504809152812695]
This work explores the integration of metaheuristic algorithms -- Particle Swarm Optimization, Ant Colony Optimization, Tabu Search, Genetic Algorithm, Simulated Annealing, and Harmony Search -- into Quantum Reinforcement Learning.
Evaluations in $5times5$ MiniGrid Reinforcement Learning environments show that, all algorithms yield near-optimal results.
arXiv Detail & Related papers (2024-08-02T11:14:41Z) - Monte Carlo Tree Descent for Black-Box Optimization [10.698553177585973]
We study how to further integrate sample-based descent for faster optimization.
We design novel ways of expanding Monte Carlo search trees, with new descent methods at vertices.
We show empirically that the proposed algorithms can outperform state-of-the-art methods on many challenging benchmark problems.
arXiv Detail & Related papers (2022-11-01T22:45:10Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Policy Gradient Algorithms with Monte Carlo Tree Learning for Non-Markov Decision Processes [3.9311044240639568]
Policy gradient (PG) is a reinforcement learning (RL) approach that optimize a parameterized policy model for an expected return using gradient ascent.
While PG can work well even in non-Markovian environments, it may encounter plateaus or peakiness issues.
In this work, we first introduce Monte Carlo Tree Learning (MCTL), an adaptation of MCTS for online RL. We then explore a combined policy approach of PG and MCTL to leverage their strengths.
arXiv Detail & Related papers (2022-06-02T12:21:40Z) - Learning to Schedule Heuristics for the Simultaneous Stochastic
Optimization of Mining Complexes [2.538209532048867]
The proposed learn-to-perturb (L2P) hyper-heuristic is a multi-neighborhood simulated annealing algorithm.
L2P is tested on several real-world mining complexes, with an emphasis on efficiency, robustness, and generalization capacity.
Results show a reduction in the number of iterations by 30-50% and in the computational time by 30-45%.
arXiv Detail & Related papers (2022-02-25T18:20:14Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Stochastic Optimization Forests [60.523606291705214]
We show how to train forest decision policies by growing trees that choose splits to directly optimize the downstream decision quality, rather than splitting to improve prediction accuracy as in the standard random forest algorithm.
We show that our approximate splitting criteria can reduce running time hundredfold, while achieving performance close to forest algorithms that exactly re-optimize for every candidate split.
arXiv Detail & Related papers (2020-08-17T16:56:06Z) - Generalized and Scalable Optimal Sparse Decision Trees [56.35541305670828]
We present techniques that produce optimal decision trees over a variety of objectives.
We also introduce a scalable algorithm that produces provably optimal results in the presence of continuous variables.
arXiv Detail & Related papers (2020-06-15T19:00:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.