Optimizing Variational Quantum Circuits Using Metaheuristic Strategies in Reinforcement Learning
- URL: http://arxiv.org/abs/2408.01187v1
- Date: Fri, 2 Aug 2024 11:14:41 GMT
- Title: Optimizing Variational Quantum Circuits Using Metaheuristic Strategies in Reinforcement Learning
- Authors: Michael Kölle, Daniel Seidl, Maximilian Zorn, Philipp Altmann, Jonas Stein, Thomas Gabor,
- Abstract summary: This work explores the integration of metaheuristic algorithms -- Particle Swarm Optimization, Ant Colony Optimization, Tabu Search, Genetic Algorithm, Simulated Annealing, and Harmony Search -- into Quantum Reinforcement Learning.
Evaluations in $5times5$ MiniGrid Reinforcement Learning environments show that, all algorithms yield near-optimal results.
- Score: 2.7504809152812695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Reinforcement Learning (QRL) offers potential advantages over classical Reinforcement Learning, such as compact state space representation and faster convergence in certain scenarios. However, practical benefits require further validation. QRL faces challenges like flat solution landscapes, where traditional gradient-based methods are inefficient, necessitating the use of gradient-free algorithms. This work explores the integration of metaheuristic algorithms -- Particle Swarm Optimization, Ant Colony Optimization, Tabu Search, Genetic Algorithm, Simulated Annealing, and Harmony Search -- into QRL. These algorithms provide flexibility and efficiency in parameter optimization. Evaluations in $5\times5$ MiniGrid Reinforcement Learning environments show that, all algorithms yield near-optimal results, with Simulated Annealing and Particle Swarm Optimization performing best. In the Cart Pole environment, Simulated Annealing, Genetic Algorithms, and Particle Swarm Optimization achieve optimal results, while the others perform slightly better than random action selection. These findings demonstrate the potential of Particle Swarm Optimization and Simulated Annealing for efficient QRL learning, emphasizing the need for careful algorithm selection and adaptation.
Related papers
- Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Adaptive Approach For Sparse Representations Using The Locally
Competitive Algorithm For Audio [5.6394515393964575]
This paper presents an adaptive approach to optimize the gammachirp's parameters.
The proposed method consists of taking advantage of the LCA's neural architecture to automatically adapt the gammachirp's filterbank.
Results demonstrate an improvement in the LCA's performance with our approach in terms of sparsity, reconstruction quality, and convergence time.
arXiv Detail & Related papers (2021-09-29T20:26:16Z) - Learning Sampling Policy for Faster Derivative Free Optimization [100.27518340593284]
We propose a new reinforcement learning based ZO algorithm (ZO-RL) with learning the sampling policy for generating the perturbations in ZO optimization instead of using random sampling.
Our results show that our ZO-RL algorithm can effectively reduce the variances of ZO gradient by learning a sampling policy, and converge faster than existing ZO algorithms in different scenarios.
arXiv Detail & Related papers (2021-04-09T14:50:59Z) - Particle Swarm Optimization: Fundamental Study and its Application to
Optimization and to Jetty Scheduling Problems [0.0]
The advantages of evolutionary algorithms with respect to traditional methods have been greatly discussed in the literature.
While particle swarms share such advantages, they outperform evolutionary algorithms in that they require lower computational cost and easier implementation.
This paper does not intend to study their tuning, general-purpose settings are taken from previous studies, and virtually the same algorithm is used to optimize a variety of notably different problems.
arXiv Detail & Related papers (2021-01-25T02:06:30Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z) - Learning to be Global Optimizer [28.88646928299302]
We learn an optimal network and escaping capability algorithm for some benchmark functions.
We show that the learned algorithm significantly outperforms some well-known classical optimization algorithms.
arXiv Detail & Related papers (2020-03-10T03:46:25Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.