論文の概要: Entailment-Driven Privacy Policy Classification with LLMs
- arxiv url: http://arxiv.org/abs/2409.16621v1
- Date: Wed, 25 Sep 2024 05:07:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 05:35:28.458438
- Title: Entailment-Driven Privacy Policy Classification with LLMs
- Title(参考訳): LLMを用いた詳細駆動型プライバシポリシ分類
- Authors: Bhanuka Silva, Dishanika Denipitiyage, Suranga Seneviratne, Anirban Mahanti, Aruna Seneviratne,
- Abstract要約: 本稿では,プライバシーポリシーの段落をユーザが容易に理解できる意味のあるラベルに分類する枠組みを提案する。
私たちのフレームワークは、F1スコアを平均11.2%改善します。
- 参考スコア(独自算出の注目度): 3.564208334473993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While many online services provide privacy policies for end users to read and understand what personal data are being collected, these documents are often lengthy and complicated. As a result, the vast majority of users do not read them at all, leading to data collection under uninformed consent. Several attempts have been made to make privacy policies more user friendly by summarising them, providing automatic annotations or labels for key sections, or by offering chat interfaces to ask specific questions. With recent advances in Large Language Models (LLMs), there is an opportunity to develop more effective tools to parse privacy policies and help users make informed decisions. In this paper, we propose an entailment-driven LLM based framework to classify paragraphs of privacy policies into meaningful labels that are easily understood by users. The results demonstrate that our framework outperforms traditional LLM methods, improving the F1 score in average by 11.2%. Additionally, our framework provides inherently explainable and meaningful predictions.
- Abstract(参考訳): 多くのオンラインサービスは、エンドユーザが収集されている個人情報を読んだり理解したりするためのプライバシーポリシーを提供しているが、これらの文書はしばしば長く複雑である。
その結果、大多数のユーザーはそれを全く読まないため、インフォームドされていない同意の下でのデータ収集に繋がる。
プライバシーポリシーをよりユーザフレンドリにするためのいくつかの試みは、それらを要約したり、重要なセクションの自動アノテーションやラベルを提供したり、特定の質問をするためのチャットインターフェースを提供したりしている。
近年のLarge Language Models (LLMs)の進歩により、プライバシーポリシーを解析し、ユーザが決定を下すのに役立つ、より効果的なツールを開発する機会がある。
本稿では,プライバシーポリシーの段落をユーザが容易に理解できる有意義なラベルに分類する,エンテーメント駆動型LLMベースのフレームワークを提案する。
その結果、我々のフレームワークは従来のLCM法よりも優れており、F1スコアは平均11.2%向上した。
さらに、私たちのフレームワークは本質的に説明可能な意味のある予測を提供します。
関連論文リスト
- Privacy Policy Analysis through Prompt Engineering for LLMs [3.059256166047627]
PAPEL (Privacy Policy Analysis through Prompt Engineering for LLMs) は、Large Language Models (LLMs) の力を利用してプライバシーポリシーの分析を自動化するフレームワークである。
これらのポリシーからの情報の抽出、アノテーション、要約を合理化し、追加のモデルトレーニングを必要とせず、アクセシビリティと理解性を高めることを目的としている。
PAPELの有効性を, (i) アノテーションと (ii) 矛盾解析の2つの応用で実証した。
論文 参考訳(メタデータ) (2024-09-23T10:23:31Z) - Are LLM-based methods good enough for detecting unfair terms of service? [67.49487557224415]
大規模言語モデル(LLM)は、長いテキストベースの文書を解析するのに適している。
プライバシーポリシーの集合に対して個別に適用された12の質問からなるデータセットを構築します。
いくつかのオープンソースモデルは、いくつかの商用モデルと比較して高い精度を提供できる。
論文 参考訳(メタデータ) (2024-08-24T09:26:59Z) - Data Exposure from LLM Apps: An In-depth Investigation of OpenAI's GPTs [17.433387980578637]
本稿は,LLMアプリのデータプラクティスにおける透明性の実現を目的とする。
OpenAIのGPTアプリエコシステムを研究します。
パスワードなどのOpenAIが禁止している機密情報を含む,ユーザに関する広範囲なデータを収集する。
論文 参考訳(メタデータ) (2024-08-23T17:42:06Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
大規模言語モデル(LLM)は多くのドメインに不可欠なものとなり、データ管理、マイニング、分析におけるアプリケーションを大幅に進歩させた。
この問題の批判的な性質にもかかわらず、LLMにおけるデータプライバシのリスクを総合的に評価する文献は存在しない。
本稿では,LLMにおけるデータプライバシリスクの体系的評価を目的としたツールキットであるLLM-PBEを紹介する。
論文 参考訳(メタデータ) (2024-08-23T01:37:29Z) - Mind the Privacy Unit! User-Level Differential Privacy for Language Model Fine-Tuning [62.224804688233]
差分プライバシ(DP)は、モデルが特定のプライバシユニットで「ほとんど区別できない」ことを保証することで、有望なソリューションを提供する。
ユーザ間でのプライバシー保護の確保に必要なアプリケーションによって動機づけられたユーザレベルのDPについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:54:32Z) - Automated Detection and Analysis of Data Practices Using A Real-World
Corpus [20.4572759138767]
プライバシポリシ内のデータプラクティスを,さまざまなレベルで詳細に識別し視覚化するための,自動アプローチを提案する。
提案手法は,データ実践記述とポリシー記述とを正確にマッチングし,ユーザへの簡易なプライバシ情報の提示を容易にする。
論文 参考訳(メタデータ) (2024-02-16T18:51:40Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - PolicyGPT: Automated Analysis of Privacy Policies with Large Language
Models [41.969546784168905]
実際に使う場合、ユーザーは慎重に読むのではなく、Agreeボタンを直接クリックする傾向がある。
このプラクティスは、プライバシーの漏洩や法的問題のリスクにユーザをさらけ出す。
近年,ChatGPT や GPT-4 などの大規模言語モデル (LLM) が出現し,テキスト解析の新たな可能性が高まっている。
論文 参考訳(メタデータ) (2023-09-19T01:22:42Z) - PLUE: Language Understanding Evaluation Benchmark for Privacy Policies
in English [77.79102359580702]
プライバシポリシ言語理解評価ベンチマークは,プライバシポリシ言語理解を評価するマルチタスクベンチマークである。
また、プライバシポリシの大規模なコーパスを収集し、プライバシポリシドメイン固有の言語モデル事前トレーニングを可能にします。
ドメイン固有の連続的な事前トレーニングは、すべてのタスクでパフォーマンスを改善することを実証します。
論文 参考訳(メタデータ) (2022-12-20T05:58:32Z) - Retrieval Enhanced Data Augmentation for Question Answering on Privacy
Policies [74.01792675564218]
本研究では,ラベルのないポリシー文書から関連するテキストセグメントを抽出する検索モデルに基づくデータ拡張フレームワークを開発する。
拡張データの多様性と品質を改善するために,複数の事前学習言語モデル(LM)を活用し,ノイズ低減フィルタモデルでそれらをカスケードする。
PrivacyQAベンチマークの強化データを使用して、既存のベースラインを大きなマージン(10% F1)に高め、新しい最先端のF1スコアを50%達成します。
論文 参考訳(メタデータ) (2022-04-19T15:45:23Z) - A Comparative Study of Sequence Classification Models for Privacy Policy
Coverage Analysis [0.0]
プライバシーポリシーは、ウェブサイトがユーザーのデータを収集、使用、配布する方法を記述する法的文書である。
私たちのソリューションは、さまざまな古典的な機械学習とディープラーニング技術を使用して、Webサイトのプライバシポリシのカバレッジ分析をユーザに提供することです。
論文 参考訳(メタデータ) (2020-02-12T21:46:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。