論文の概要: Emotional Dimension Control in Language Model-Based Text-to-Speech: Spanning a Broad Spectrum of Human Emotions
- arxiv url: http://arxiv.org/abs/2409.16681v1
- Date: Wed, 25 Sep 2024 07:16:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 05:12:32.819581
- Title: Emotional Dimension Control in Language Model-Based Text-to-Speech: Spanning a Broad Spectrum of Human Emotions
- Title(参考訳): 言語モデルに基づく音声合成における感情次元制御:人間の感情の広帯域化
- Authors: Kun Zhou, You Zhang, Shengkui Zhao, Hao Wang, Zexu Pan, Dianwen Ng, Chong Zhang, Chongjia Ni, Yukun Ma, Trung Hieu Nguyen, Jia Qi Yip, Bin Ma,
- Abstract要約: 現在の感情的テキスト音声システムは、人間の感情の幅広い範囲を模倣する際の課題に直面している。
本稿では,喜び,覚醒,支配の制御を容易にするTTSフレームワークを提案する。
TTSトレーニング中に感情的な音声データを必要とせずに、感情的なスタイルの多様性を合成することができる。
- 参考スコア(独自算出の注目度): 37.075331767703986
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current emotional text-to-speech (TTS) systems face challenges in mimicking a broad spectrum of human emotions due to the inherent complexity of emotions and limitations in emotional speech datasets and models. This paper proposes a TTS framework that facilitates control over pleasure, arousal, and dominance, and can synthesize a diversity of emotional styles without requiring any emotional speech data during TTS training. We train an emotional attribute predictor using only categorical labels from speech data, aligning with psychological research and incorporating anchored dimensionality reduction on self-supervised learning (SSL) features. The TTS framework converts text inputs into phonetic tokens via an autoregressive language model and uses pseudo-emotional dimensions to guide the parallel prediction of fine-grained acoustic details. Experiments conducted on the LibriTTS dataset demonstrate that our framework can synthesize speech with enhanced naturalness and a variety of emotional styles by effectively controlling emotional dimensions, even without the inclusion of any emotional speech during TTS training.
- Abstract(参考訳): 現在の感情テキスト音声システム(TTS)は、感情の複雑さや感情のデータセットやモデルにおける制限によって、人間の感情の幅広い範囲を模倣する上で、課題に直面している。
本稿では, 快楽, 覚醒, 支配の制御を容易にするTTSフレームワークを提案し, TTSトレーニング中に感情的な音声データを必要とせず, 多様な感情スタイルを合成することができる。
音声データからの分類ラベルのみを用いて感情属性予測器を訓練し、心理学的な研究と整合し、自己教師付き学習(SSL)機能にアンカード・デメンタリティ・リダクションを取り入れた。
TTSフレームワークは、テキスト入力を自己回帰言語モデルを介して音声トークンに変換し、擬似感情次元を用いて、きめ細かい音響詳細の並列予測を導く。
LibriTTSデータセットを用いた実験により,TTS訓練中に感情的音声を含まない場合でも,感情的次元を効果的に制御することで,自然性や多様な感情的スタイルで音声を合成できることが実証された。
関連論文リスト
- EmoSphere++: Emotion-Controllable Zero-Shot Text-to-Speech via Emotion-Adaptive Spherical Vector [26.656512860918262]
EmoSphere++は感情制御可能なゼロショットTSモデルで、感情のスタイルや強度をコントロールでき、自然な人間の音声に似ています。
人間のアノテーションを使わずに感情のスタイルや強度をモデル化する,感情適応型球面ベクトルを新たに導入する。
条件付きフローマッチングに基づくデコーダを用いて,数ステップのサンプリングで高品質で表現力のある感情的TSを実現する。
論文 参考訳(メタデータ) (2024-11-04T21:33:56Z) - Facial Expression-Enhanced TTS: Combining Face Representation and Emotion Intensity for Adaptive Speech [0.13654846342364302]
FEIM-TTSはゼロショット音声合成モデルである。
モデルはLSS3、CREMA-D、MELDデータセットを使用してトレーニングされ、適応性を示している。
TTSに感情的なニュアンスを組み込むことで、Webコミックのダイナミックで魅力的な聴覚体験を可能にし、視覚障害者がこれらの物語をより完全に楽しめるようにする。
論文 参考訳(メタデータ) (2024-09-24T16:01:12Z) - Exploring speech style spaces with language models: Emotional TTS without emotion labels [8.288443063900825]
本研究では,感情ラベルやテキストプロンプトを必要とせず,テキスト認識を利用して感情的スタイルを習得する手法を提案する。
E-TTSの2段階フレームワークであるTEMOTTSについて述べる。
論文 参考訳(メタデータ) (2024-05-18T23:21:39Z) - MM-TTS: A Unified Framework for Multimodal, Prompt-Induced Emotional Text-to-Speech Synthesis [70.06396781553191]
MM-TTS(Multimodal Emotional Text-to-Speech System)は、複数のモーダルからの感情的手がかりを利用して、高表現的で感情的に共鳴する音声を生成する統合フレームワークである。
Emotion Prompt Alignment Module (EP-Align),Emotion Embedding-induced TTS (EMI-TTS),Emotion Embedding-induced TTS (Emotion Embedding-induced TTS) の2つの主要なコンポーネントで構成されている。
論文 参考訳(メタデータ) (2024-04-29T03:19:39Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
会話音声合成(CSS)は,会話環境の中で適切な韻律と感情のインフレクションで発話を正確に表現することを目的としている。
データ不足の問題に対処するため、私たちはカテゴリと強度の点で感情的なラベルを慎重に作成します。
我々のモデルは感情の理解と表現においてベースラインモデルよりも優れています。
論文 参考訳(メタデータ) (2023-12-19T08:47:50Z) - ZET-Speech: Zero-shot adaptive Emotion-controllable Text-to-Speech
Synthesis with Diffusion and Style-based Models [83.07390037152963]
ZET-Speech はゼロショット適応型 TTS モデルである。
ユーザは、短い中性音声セグメントとターゲットの感情ラベルのみを使用して、任意の話者の感情音声を合成することができる。
実験の結果,ZET-Speechは自然音声と感情音声の合成に成功していることがわかった。
論文 参考訳(メタデータ) (2023-05-23T08:52:00Z) - EMOVIE: A Mandarin Emotion Speech Dataset with a Simple Emotional
Text-to-Speech Model [56.75775793011719]
音声ファイルを含む9,724のサンプルとその感情ラベル付きアノテーションを含むマンダリン感情音声データセットを導入,公開する。
入力として追加の参照音声を必要とするこれらのモデルとは異なり、我々のモデルは入力テキストから直接感情ラベルを予測し、感情埋め込みに基づいてより表現力のある音声を生成することができる。
実験段階では、まず感情分類タスクによってデータセットの有効性を検証し、次に提案したデータセットに基づいてモデルをトレーニングし、一連の主観評価を行う。
論文 参考訳(メタデータ) (2021-06-17T08:34:21Z) - Limited Data Emotional Voice Conversion Leveraging Text-to-Speech:
Two-stage Sequence-to-Sequence Training [91.95855310211176]
感情的音声変換は、言語内容と話者のアイデンティティを保ちながら、発話の感情状態を変えることを目的としている。
本研究では,感情音声データ量の少ない連続音声変換のための新しい2段階学習戦略を提案する。
提案フレームワークはスペクトル変換と韻律変換の両方が可能であり、客観的評価と主観評価の両方において最先端のベースラインを大幅に改善する。
論文 参考訳(メタデータ) (2021-03-31T04:56:14Z) - Seen and Unseen emotional style transfer for voice conversion with a new
emotional speech dataset [84.53659233967225]
感情的音声変換は、言語内容と話者のアイデンティティを保ちながら、音声中の感情的韻律を変換することを目的としている。
可変自動符号化ワッサーシュタイン生成対向ネットワーク(VAW-GAN)に基づく新しいフレームワークを提案する。
提案するフレームワークは,ベースラインフレームワークを一貫して上回り,優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2020-10-28T07:16:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。