Cycle Counting under Local Differential Privacy for Degeneracy-bounded Graphs
- URL: http://arxiv.org/abs/2409.16688v2
- Date: Fri, 27 Sep 2024 03:48:50 GMT
- Title: Cycle Counting under Local Differential Privacy for Degeneracy-bounded Graphs
- Authors: Quentin Hillebrand, Vorapong Suppakitpaisarn, Tetsuo Shibuya,
- Abstract summary: We propose an algorithm for counting the number of cycles under local differential privacy for degeneracy-bounded input graphs.
Our algorithm achieves an expected $ell$-error of $O(d_max0.5 n0.5) = O(n)$ for degeneracy-bounded graphs.
- Score: 2.9123921488295768
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an algorithm for counting the number of cycles under local differential privacy for degeneracy-bounded input graphs. Numerous studies have focused on counting the number of triangles under the privacy notion, demonstrating that the expected $\ell_2$-error of these algorithms is $\Omega(n^{1.5})$, where $n$ is the number of nodes in the graph. When parameterized by the number of cycles of length four ($C_4$), the best existing triangle counting algorithm has an error of $O(n^{1.5} + \sqrt{C_4}) = O(n^2)$. In this paper, we introduce an algorithm with an expected $\ell_2$-error of $O(\delta^{1.5} n^{0.5} + \delta^{0.5} d_{\max}^{0.5} n^{0.5})$, where $\delta$ is the degeneracy and $d_{\max}$ is the maximum degree of the graph. For degeneracy-bounded graphs ($\delta \in \Theta(1)$) commonly found in practical social networks, our algorithm achieves an expected $\ell_2$-error of $O(d_{\max}^{0.5} n^{0.5}) = O(n)$. Our algorithm's core idea is a precise count of triangles following a preprocessing step that approximately sorts the degree of all nodes. This approach can be extended to approximate the number of cycles of length $k$, maintaining a similar $\ell_2$-error, namely $O(\delta^{(k-2)/2} d_{\max}^{0.5} n^{(k-2)/2} + \delta^{k/2} n^{(k-2)/2})$ or $O(d_{\max}^{0.5} n^{(k-2)/2}) = O(n^{(k-1)/2})$ for degeneracy-bounded graphs.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Efficient Continual Finite-Sum Minimization [52.5238287567572]
We propose a key twist into the finite-sum minimization, dubbed as continual finite-sum minimization.
Our approach significantly improves upon the $mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$ requires.
We also prove that there is no natural first-order method with $mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$, establishing that the first-order complexity of our method is nearly tight.
arXiv Detail & Related papers (2024-06-07T08:26:31Z) - Sample-Efficient Linear Regression with Self-Selection Bias [7.605563562103568]
We consider the problem of linear regression with self-selection bias in the unknown-index setting.
We provide a novel and near optimally sample-efficient (in terms of $k$) algorithm to recover $mathbfw_1,ldots,mathbfw_kin.
Our algorithm succeeds under significantly relaxed noise assumptions, and therefore also succeeds in the related setting of max-linear regression.
arXiv Detail & Related papers (2024-02-22T02:20:24Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Faster Gradient-Free Algorithms for Nonsmooth Nonconvex Stochastic Optimization [20.54801745090522]
We consider the problem of the form $min_x in mathbbRd f(x) triangleq mathbbE_xi [Fxi]$inf(x)$ Lipschitz.
The recently proposed gradient-free method requires at most $mathcalO( L4 d3/2 epsilon-4 + Goldstein L d3/2 delta-1 epsilon-4)$ zeroth-order complexity
arXiv Detail & Related papers (2023-01-16T13:33:37Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
We give a sketching-based iterative algorithm that computes $1+varepsilon$ approximate solutions for the ridge regression problem.
We also show that this algorithm can be used to give faster algorithms for kernel ridge regression.
arXiv Detail & Related papers (2022-04-13T22:18:47Z) - Coresets for Data Discretization and Sine Wave Fitting [39.18104905459739]
A stream of integers in $[N]:=1,cdots,N$ is received from a sensor.
The goal is to approximate the $n$ points received so far in $P$ by a single frequency.
We prove that emphevery set $P$ of $n$ has a weighted subset $Ssubseteq P$.
arXiv Detail & Related papers (2022-03-06T17:07:56Z) - Finding the KT partition of a weighted graph in near-linear time [1.572727650614088]
Kawarabayashi and Thorup gave a near-trivial time deterministic algorithm for minimum cut in a simple graph $G = (V,E)$.
We give a near-linear time randomized algorithm to find the $(1+varepsilon)$-KT partition of a weighted graph.
arXiv Detail & Related papers (2021-11-02T05:26:10Z) - Locally Private $k$-Means Clustering with Constant Multiplicative
Approximation and Near-Optimal Additive Error [10.632986841188]
We bridge the gap between the exponents of $n$ in the upper and lower bounds on the additive error with two new algorithms.
It is possible to solve the locally private $k$-means problem in a constant number of rounds with constant factor multiplicative approximation.
arXiv Detail & Related papers (2021-05-31T14:41:40Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
We exploit the finite noise structure of finite sums to derive a matching $O(n2)$-upper bound under the global oracle model.
Following a similar approach, we propose a novel adaptation of SVRG which is both emphcompatible with oracles, and achieves complexity bounds of $tildeO(n2+nsqrtL/mu)log (1/epsilon)$ and $O(nsqrtL/epsilon)$, for $mu>0$ and $mu=0$
arXiv Detail & Related papers (2020-02-09T03:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.