論文の概要: Fast unconditional reset and leakage reduction in fixed-frequency transmon qubits
- arxiv url: http://arxiv.org/abs/2409.16748v1
- Date: Wed, 25 Sep 2024 08:57:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 04:40:44.062865
- Title: Fast unconditional reset and leakage reduction in fixed-frequency transmon qubits
- Title(参考訳): 固定周波数トランスモン量子ビットにおける高速無条件リセットとリーク低減
- Authors: Liangyu Chen, Simon Pettersson Fors, Zixian Yan, Anaida Ali, Tahereh Abad, Amr Osman, Eleftherios Moschandreou, Benjamin Lienhard, Sandoko Kosen, Hang-Xi Li, Daryoush Shiri, Tong Liu, Stefan Hill, Abdullah-Al Amin, Robert Rehammar, Mamta Dahiya, Andreas Nylander, Marcus Rommel, Anita Fadavi Roudsari, Marco Caputo, Grönberg Leif, Joonas Govenius, Miroslav Dobsicek, Michele Faucci Giannelli, Anton Frisk Kockum, Jonas Bylander, Giovanna Tancredi,
- Abstract要約: 量子ビットリセットとリークリダクションの両方を実装可能なプロトコルを示す。
合計して、クビットリセット、リークリセット、カプラリセットの組み合わせは83nsで完了する。
また,本プロトコルは,QECサイクル実行時間を短縮し,量子コンピュータにおけるアルゴリズムの忠実度を向上させる手段を提供する。
- 参考スコア(独自算出の注目度): 5.648269866084686
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The realization of fault-tolerant quantum computing requires the execution of quantum error-correction (QEC) schemes, to mitigate the fragile nature of qubits. In this context, to ensure the success of QEC, a protocol capable of implementing both qubit reset and leakage reduction is highly desirable. We demonstrate such a protocol in an architecture consisting of fixed-frequency transmon qubits pair-wise coupled via tunable couplers -- an architecture that is compatible with the surface code. We use tunable couplers to transfer any undesired qubit excitation to the readout resonator of the qubit, from which this excitation decays into the feedline. In total, the combination of qubit reset, leakage reduction, and coupler reset takes only 83ns to complete. Our reset scheme is fast, unconditional, and achieves fidelities well above 99%, thus enabling fixed-frequency qubit architectures as future implementations of fault-tolerant quantum computers. Our protocol also provides a means to both reduce QEC cycle runtime and improve algorithmic fidelity on quantum computers.
- Abstract(参考訳): フォールトトレラント量子コンピューティングの実現には、量子ビットの脆弱性を軽減するために量子エラー補正(QEC)スキームの実行が必要である。
この文脈では、QECの成功を確実にするために、キュービットリセットとリーク低減の両方を実装可能なプロトコルが極めて望ましい。
このようなプロトコルは、固定周波数のトランペットキュービットからなるアーキテクチャにおいて、チューナブルカプラ(表面コードと互換性のあるアーキテクチャ)を介してペアで結合される。
チューナブルカプラを用いて、望ましくないクビット励起をキュービットの読み出し共振器に転送し、そこからこの励起がフィードラインに減衰する。
合計して、クビットリセット、リークリセット、カプラリセットの組み合わせは83nsで完了する。
我々のリセット方式は高速で無条件であり、99%以上の忠実性を実現し、フォールトトレラント量子コンピュータの将来の実装として固定周波数量子ビットアーキテクチャを実現する。
また,本プロトコルは,QECサイクル実行時間を短縮し,量子コンピュータにおけるアルゴリズムの忠実度を向上させる手段を提供する。
関連論文リスト
- Accelerating Error Correction Code Transformers [56.75773430667148]
本稿では,トランスを用いたデコーダの高速化手法を提案する。
最新のハードウェアでは、90%の圧縮比を実現し、算術演算エネルギー消費を少なくとも224倍削減する。
論文 参考訳(メタデータ) (2024-10-08T11:07:55Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
我々は、支配的なノイズを既知の場所での消去に効率よく変換することで、消去量子ビットの考え方を利用する。
消去量子ビットと最近導入されたFloquet符号に基づくQECスキームの提案と最適化を行う。
以上の結果から, 消去量子ビットに基づくQECスキームは, より複雑であるにもかかわらず, 標準手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-12-21T17:40:18Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - Reliable Quantum Communications based on Asymmetry in Distillation and Coding [35.693513369212646]
量子コンピューティングにおける絡み合った量子ビットの信頼性確保の問題に対処する。
テレポーテーションと蒸留に基づく間接送信を組み合わせ,(2)量子誤り訂正(QEC)に基づく直接送信
その結果、アドホックな非対称符号は、従来のQECと比較して、単一リンクと量子ネットワークのシナリオの両方において、性能向上とコードワードサイズ削減をもたらすことがわかった。
論文 参考訳(メタデータ) (2023-05-01T17:13:23Z) - Modular decoding: parallelizable real-time decoding for quantum
computers [55.41644538483948]
リアルタイム量子計算は、ノイズの多い量子ハードウェアによって生成されたデータのストリームから論理的な結果を取り出すことができる復号アルゴリズムを必要とする。
本稿では,デコーディングの精度を犠牲にすることなく,最小限の追加通信でこの問題に対処できるモジュールデコーディングを提案する。
本稿では,格子探索型耐故障ブロックのモジュールデコーディングの具体例であるエッジ頂点分解について紹介する。
論文 参考訳(メタデータ) (2023-03-08T19:26:10Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Applying the Quantum Error-correcting Codes for Fault-tolerant Blind
Quantum Computation [33.51070104730591]
ブラインド量子計算(Blind Quantum Computation、BQC)は、クライアントが望まれる量子計算を実装するためにリモート量子サーバをレンタルするプロトコルである。
本稿では,量子誤り訂正符号を用いたフォールトトレラントブラインド量子計算プロトコルを提案する。
論文 参考訳(メタデータ) (2023-01-05T08:52:55Z) - Fault-tolerant circuit synthesis for universal fault-tolerant quantum
computing [0.0]
幾何学的符号に基づく普遍的フォールトトレラント量子コンピューティングを実現するための量子回路合成アルゴリズムを提案する。
我々は、一般的なフォールトトレラントプロトコルのセットを$[[[7,1,3]]$ Steaneコードで合成する方法と、症候群測定プロトコルを$[[23, 1, 7]$ Golayコードで合成する方法を示す。
論文 参考訳(メタデータ) (2022-06-06T15:43:36Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
耐故障性ウェイト4パリティチェック測定方式を実験的に実証した。
フラグ条件パリティ測定の単発忠実度は93.2(2)%である。
このスキームは、安定化器量子誤り訂正プロトコルの幅広いクラスにおいて必須な構成要素である。
論文 参考訳(メタデータ) (2021-07-13T20:08:04Z) - Rapid and Unconditional Parametric Reset Protocol for Tunable
Superconducting Qubits [12.429990467686526]
量子コンピューティングにおける量子ビットの高速かつ高忠実リセット方式について報告する。
トランスモン量子ビットを通してフラックスを変調することにより、量子ビットとその読み出し共振器間のスワップを実現する。
提案手法は, 2次励起状態の劣化を効果的に達成し, (ii) 近傍の量子ビットに対して無視可能な効果を有し, (iii) 量子ビットを反復的な単一光子で絡み合わせる方法を提供する。
論文 参考訳(メタデータ) (2021-03-21T06:22:59Z) - Recycling qubits in near-term quantum computers [1.2891210250935146]
本稿では、回路が共通の畳み込み形式を持つ場合、キュービットを一元的にリセットできるプロトコルを提案する。
このプロトコルは、使用されていないキュービットに時間反転量子回路を部分的に適用することにより、使用中のキュービットから新しいキュービットを生成する。
論文 参考訳(メタデータ) (2020-12-03T03:24:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。