Fast unconditional reset and leakage reduction in fixed-frequency transmon qubits
- URL: http://arxiv.org/abs/2409.16748v2
- Date: Mon, 7 Oct 2024 20:23:13 GMT
- Title: Fast unconditional reset and leakage reduction in fixed-frequency transmon qubits
- Authors: Liangyu Chen, Simon Pettersson Fors, Zixian Yan, Anaida Ali, Tahereh Abad, Amr Osman, Eleftherios Moschandreou, Benjamin Lienhard, Sandoko Kosen, Hang-Xi Li, Daryoush Shiri, Tong Liu, Stefan Hill, Abdullah-Al Amin, Robert Rehammar, Mamta Dahiya, Andreas Nylander, Marcus Rommel, Anita Fadavi Roudsari, Marco Caputo, Grönberg Leif, Joonas Govenius, Miroslav Dobsicek, Michele Faucci Giannelli, Anton Frisk Kockum, Jonas Bylander, Giovanna Tancredi,
- Abstract summary: We show a protocol capable of implementing both qubit reset and leakage reduction.
In total, the combination of qubit reset, leakage reduction, and coupler reset takes only 83ns to complete.
Our protocol also provides a means to both reduce QEC cycle runtime and improve algorithmic fidelity on quantum computers.
- Score: 5.648269866084686
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The realization of fault-tolerant quantum computing requires the execution of quantum error-correction (QEC) schemes, to mitigate the fragile nature of qubits. In this context, to ensure the success of QEC, a protocol capable of implementing both qubit reset and leakage reduction is highly desirable. We demonstrate such a protocol in an architecture consisting of fixed-frequency transmon qubits pair-wise coupled via tunable couplers -- an architecture that is compatible with the surface code. We use tunable couplers to transfer any undesired qubit excitation to the readout resonator of the qubit, from which this excitation decays into the feedline. In total, the combination of qubit reset, leakage reduction, and coupler reset takes only 83ns to complete. Our reset scheme is fast, unconditional, and achieves fidelities well above 99%, thus enabling fixed-frequency qubit architectures as future implementations of fault-tolerant quantum computers. Our protocol also provides a means to both reduce QEC cycle runtime and improve algorithmic fidelity on quantum computers.
Related papers
- Accelerating Error Correction Code Transformers [56.75773430667148]
We introduce a novel acceleration method for transformer-based decoders.
We achieve a 90% compression ratio and reduce arithmetic operation energy consumption by at least 224 times on modern hardware.
arXiv Detail & Related papers (2024-10-08T11:07:55Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Reliable Quantum Communications based on Asymmetry in Distillation and Coding [35.693513369212646]
We address the problem of reliable provision of entangled qubits in quantum computing schemes.
We combine indirect transmission based on teleportation and distillation; (2) direct transmission, based on quantum error correction (QEC)
Our results show that ad-hoc asymmetric codes give, compared to conventional QEC, a performance boost and codeword size reduction both in a single link and in a quantum network scenario.
arXiv Detail & Related papers (2023-05-01T17:13:23Z) - Modular decoding: parallelizable real-time decoding for quantum
computers [55.41644538483948]
Real-time quantum computation will require decoding algorithms capable of extracting logical outcomes from a stream of data generated by noisy quantum hardware.
We propose modular decoding, an approach capable of addressing this challenge with minimal additional communication and without sacrificing decoding accuracy.
We introduce the edge-vertex decomposition, a concrete instance of modular decoding for lattice-surgery style fault-tolerant blocks.
arXiv Detail & Related papers (2023-03-08T19:26:10Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Applying the Quantum Error-correcting Codes for Fault-tolerant Blind
Quantum Computation [33.51070104730591]
The Blind Quantum Computation (BQC) is a delegated protocol, which allows a client to rent a remote quantum server to implement desired quantum computations.
We propose a fault-tolerant blind quantum computation protocol with quantum error-correcting codes to avoid the accumulation and propagation of qubit errors during the computing.
arXiv Detail & Related papers (2023-01-05T08:52:55Z) - Fault-tolerant circuit synthesis for universal fault-tolerant quantum
computing [0.0]
We present a quantum circuit synthesis algorithm for implementing universal fault-tolerant quantum computing based on geometricd codes.
We show how to synthesize the set of universal fault-tolerant protocols for $[[7,1,3]]$ Steane code and the syndrome measurement protocol of $[[23, 1, 7]]$ Golay code.
arXiv Detail & Related papers (2022-06-06T15:43:36Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Rapid and Unconditional Parametric Reset Protocol for Tunable
Superconducting Qubits [12.429990467686526]
We report a fast and high-fidelity reset scheme for qubits in quantum computing.
By modulating the flux through a transmon qubit, we realize a swap between the qubit and its readout resonator.
Our approach can achieve effective second excited state depletion, (ii) has negligible effects on neighbouring qubits, and (iii) offers a way to entangle the qubit with an itinerant single photon.
arXiv Detail & Related papers (2021-03-21T06:22:59Z) - Recycling qubits in near-term quantum computers [1.2891210250935146]
We propose a protocol that can unitarily reset qubits when the circuit has a common convolutional form.
This protocol generates fresh qubits from used ones by partially applying the time-reversed quantum circuit over qubits that are no longer in use.
arXiv Detail & Related papers (2020-12-03T03:24:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.