Holistic Automated Red Teaming for Large Language Models through Top-Down Test Case Generation and Multi-turn Interaction
- URL: http://arxiv.org/abs/2409.16783v1
- Date: Wed, 25 Sep 2024 09:44:48 GMT
- Title: Holistic Automated Red Teaming for Large Language Models through Top-Down Test Case Generation and Multi-turn Interaction
- Authors: Jinchuan Zhang, Yan Zhou, Yaxin Liu, Ziming Li, Songlin Hu,
- Abstract summary: We proposeHolistic Automated Red teaMing, which scales up the diversity of test cases based on an adversarial, fine-grained risk taxonomy.
Our method also leverages a novel fine-tuning strategy and reinforcement learning techniques to facilitate multi-turn probing in a human-like manner.
- Score: 24.499874512829198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated red teaming is an effective method for identifying misaligned behaviors in large language models (LLMs). Existing approaches, however, often focus primarily on improving attack success rates while overlooking the need for comprehensive test case coverage. Additionally, most of these methods are limited to single-turn red teaming, failing to capture the multi-turn dynamics of real-world human-machine interactions. To overcome these limitations, we propose HARM (Holistic Automated Red teaMing), which scales up the diversity of test cases using a top-down approach based on an extensible, fine-grained risk taxonomy. Our method also leverages a novel fine-tuning strategy and reinforcement learning techniques to facilitate multi-turn adversarial probing in a human-like manner. Experimental results demonstrate that our framework enables a more systematic understanding of model vulnerabilities and offers more targeted guidance for the alignment process.
Related papers
- Automated Red Teaming with GOAT: the Generative Offensive Agent Tester [8.947465706080523]
Red teaming assesses how large language models can produce content that violates norms, policies, and rules set during their safety training.
Most existing automated methods in the literature are not representative of the way humans tend to interact with AI models.
We introduce Generative Offensive Agent Tester (GOAT), an automated agentic red teaming system that simulates plain language adversarial conversations.
arXiv Detail & Related papers (2024-10-02T14:47:05Z) - Learning diverse attacks on large language models for robust red-teaming and safety tuning [126.32539952157083]
Red-teaming, or identifying prompts that elicit harmful responses, is a critical step in ensuring the safe deployment of large language models.
We show that even with explicit regularization to favor novelty and diversity, existing approaches suffer from mode collapse or fail to generate effective attacks.
We propose to use GFlowNet fine-tuning, followed by a secondary smoothing phase, to train the attacker model to generate diverse and effective attack prompts.
arXiv Detail & Related papers (2024-05-28T19:16:17Z) - Multi-granular Adversarial Attacks against Black-box Neural Ranking Models [111.58315434849047]
We create high-quality adversarial examples by incorporating multi-granular perturbations.
We transform the multi-granular attack into a sequential decision-making process.
Our attack method surpasses prevailing baselines in both attack effectiveness and imperceptibility.
arXiv Detail & Related papers (2024-04-02T02:08:29Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Behaviour-Diverse Automatic Penetration Testing: A Curiosity-Driven
Multi-Objective Deep Reinforcement Learning Approach [3.5071575478443435]
Penetration testing plays a critical role in evaluating the security of a target network by emulating real active adversaries.
Deep Reinforcement Learning is seen as a promising solution to automating the process of penetration tests.
We propose a Chebyshev decomposition critic to find diverse adversary strategies that balance different objectives in the penetration test.
arXiv Detail & Related papers (2022-02-22T02:34:16Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
We present an effective method, called Hamiltonian Monte Carlo with Accumulated Momentum (HMCAM), aiming to generate a sequence of adversarial examples.
We also propose a new generative method called Contrastive Adversarial Training (CAT), which approaches equilibrium distribution of adversarial examples.
Both quantitative and qualitative analysis on several natural image datasets and practical systems have confirmed the superiority of the proposed algorithm.
arXiv Detail & Related papers (2020-10-15T16:07:26Z) - Opportunities and Challenges in Deep Learning Adversarial Robustness: A
Survey [1.8782750537161614]
This paper studies strategies to implement adversary robustly trained algorithms towards guaranteeing safety in machine learning algorithms.
We provide a taxonomy to classify adversarial attacks and defenses, formulate the Robust Optimization problem in a min-max setting, and divide it into 3 subcategories, namely: Adversarial (re)Training, Regularization Approach, and Certified Defenses.
arXiv Detail & Related papers (2020-07-01T21:00:32Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.