Accelerating TinyML Inference on Microcontrollers through Approximate Kernels
- URL: http://arxiv.org/abs/2409.16815v1
- Date: Wed, 25 Sep 2024 11:10:33 GMT
- Title: Accelerating TinyML Inference on Microcontrollers through Approximate Kernels
- Authors: Giorgos Armeniakos, Georgios Mentzos, Dimitrios Soudris,
- Abstract summary: In this work, we combine approximate computing and software kernel design to accelerate the inference of approximate CNN models on microcontrollers.
Our evaluation on an STM32-Nucleo board and 2 popular CNNs trained on the CIFAR-10 dataset shows that, compared to state-of-the-art exact inference, our solutions can feature on average 21% latency reduction.
- Score: 3.566060656925169
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid growth of microcontroller-based IoT devices has opened up numerous applications, from smart manufacturing to personalized healthcare. Despite the widespread adoption of energy-efficient microcontroller units (MCUs) in the Tiny Machine Learning (TinyML) domain, they still face significant limitations in terms of performance and memory (RAM, Flash). In this work, we combine approximate computing and software kernel design to accelerate the inference of approximate CNN models on MCUs. Our kernel-based approximation framework firstly unpacks the operands of each convolution layer and then conducts an offline calculation to determine the significance of each operand. Subsequently, through a design space exploration, it employs a computation skipping approximation strategy based on the calculated significance. Our evaluation on an STM32-Nucleo board and 2 popular CNNs trained on the CIFAR-10 dataset shows that, compared to state-of-the-art exact inference, our Pareto optimal solutions can feature on average 21% latency reduction with no degradation in Top-1 classification accuracy, while for lower accuracy requirements, the corresponding reduction becomes even more pronounced.
Related papers
- MONAS: Efficient Zero-Shot Neural Architecture Search for MCUs [5.321424657585365]
MONAS is a novel zero-shot NAS framework specifically designed for microcontrollers (MCUs) in edge computing.
MONAS achieves up to a 1104x improvement in search efficiency over previous work targeting MCUs.
MONAS can discover CNN models with over 3.23x faster inference on MCUs while maintaining similar accuracy compared to more general NAS approaches.
arXiv Detail & Related papers (2024-08-26T10:24:45Z) - Reduced Precision Floating-Point Optimization for Deep Neural Network
On-Device Learning on MicroControllers [15.37318446043671]
This paper introduces a novel reduced precision optimization technique for On-Device Learning (ODL) primitives on MCU-class devices.
Our approach results more than two orders of magnitude faster than existing ODL software frameworks for single-core MCUs.
arXiv Detail & Related papers (2023-05-30T16:14:16Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
We propose a novel algorithm that uses a random feature approximation (RFA) of the Neural Network Gaussian Process (NNGP) kernel.
Our algorithm provides at least a 100-fold speedup over KIP and can run on a single GPU.
Our new method, termed an RFA Distillation (RFAD), performs competitively with KIP and other dataset condensation algorithms in accuracy over a range of large-scale datasets.
arXiv Detail & Related papers (2022-10-21T15:56:13Z) - Human Activity Recognition on Microcontrollers with Quantized and
Adaptive Deep Neural Networks [10.195581493173643]
Human Activity Recognition (HAR) based on inertial data is an increasingly diffused task on embedded devices.
Most embedded HAR systems are based on simple and not-so-accurate classic machine learning algorithms.
This work proposes a set of efficient one-dimensional Convolutional Neural Networks (CNNs) deployable on general purpose microcontrollers (MCUs)
arXiv Detail & Related papers (2022-09-02T06:32:11Z) - Keyword Spotting System and Evaluation of Pruning and Quantization
Methods on Low-power Edge Microcontrollers [7.570300579676175]
Keywords spotting (KWS) is beneficial for voice-based user interactions with low-power devices at the edge.
This paper shows our small-footprint KWS system running on STM32F7 microcontroller with Cortex-M7 core @216MHz and 512KB static RAM.
arXiv Detail & Related papers (2022-08-04T16:49:45Z) - Energy-efficient Deployment of Deep Learning Applications on Cortex-M
based Microcontrollers using Deep Compression [1.4050836886292872]
This paper investigates the efficient deployment of deep learning models on resource-constrained microcontrollers.
We present a methodology for the systematic exploration of different DNN pruning, quantization, and deployment strategies.
We show that we can compress them to below 10% of their original parameter count before their predictive quality decreases.
arXiv Detail & Related papers (2022-05-20T10:55:42Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - MAPLE: Microprocessor A Priori for Latency Estimation [81.91509153539566]
Modern deep neural networks must demonstrate state-of-the-art accuracy while exhibiting low latency and energy consumption.
Measuring the latency of every evaluated architecture adds a significant amount of time to the NAS process.
We propose Microprocessor A Priori for Estimation Estimation MAPLE that does not rely on transfer learning or domain adaptation.
arXiv Detail & Related papers (2021-11-30T03:52:15Z) - MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [72.80896338009579]
We find that the memory bottleneck is due to the imbalanced memory distribution in convolutional neural network (CNN) designs.
We propose a generic patch-by-patch inference scheduling, which significantly cuts down the peak memory.
We automate the process with neural architecture search to jointly optimize the neural architecture and inference scheduling, leading to MCUNetV2.
arXiv Detail & Related papers (2021-10-28T17:58:45Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
Dense optical flow estimation plays a key role in many robotic vision tasks.
Current networks often occupy large number of parameters and require heavy computation costs.
Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations.
arXiv Detail & Related papers (2021-03-08T03:09:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.