Decomposition of Equivariant Maps via Invariant Maps: Application to Universal Approximation under Symmetry
- URL: http://arxiv.org/abs/2409.16922v1
- Date: Wed, 25 Sep 2024 13:27:41 GMT
- Title: Decomposition of Equivariant Maps via Invariant Maps: Application to Universal Approximation under Symmetry
- Authors: Akiyoshi Sannai, Yuuki Takai, Matthieu Cordonnier,
- Abstract summary: We develop a theory about the relationship between invariant and equivariant maps with regard to a group $G$.
We leverage this theory in the context of deep neural networks with group symmetries in order to obtain novel insight into their mechanisms.
- Score: 3.0518581575184225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we develop a theory about the relationship between invariant and equivariant maps with regard to a group $G$. We then leverage this theory in the context of deep neural networks with group symmetries in order to obtain novel insight into their mechanisms. More precisely, we establish a one-to-one relationship between equivariant maps and certain invariant maps. This allows us to reduce arguments for equivariant maps to those for invariant maps and vice versa. As an application, we propose a construction of universal equivariant architectures built from universal invariant networks. We, in turn, explain how the universal architectures arising from our construction differ from standard equivariant architectures known to be universal. Furthermore, we explore the complexity, in terms of the number of free parameters, of our models, and discuss the relation between invariant and equivariant networks' complexity. Finally, we also give an approximation rate for G-equivariant deep neural networks with ReLU activation functions for finite group G.
Related papers
- Relative Representations: Topological and Geometric Perspectives [53.88896255693922]
Relative representations are an established approach to zero-shot model stitching.
We introduce a normalization procedure in the relative transformation, resulting in invariance to non-isotropic rescalings and permutations.
Second, we propose to deploy topological densification when fine-tuning relative representations, a topological regularization loss encouraging clustering within classes.
arXiv Detail & Related papers (2024-09-17T08:09:22Z) - Unified Universality Theorem for Deep and Shallow Joint-Group-Equivariant Machines [15.67299102925013]
We present a constructive universal approximation theorem for learning machines equipped with joint-group-equivariant feature maps.
Our main theorem also unifies the universal approximation theorems for both shallow and deep networks.
arXiv Detail & Related papers (2024-05-22T14:25:02Z) - A Characterization Theorem for Equivariant Networks with Point-wise
Activations [13.00676132572457]
We prove that rotation-equivariant networks can only be invariant, as it happens for any network which is equivariant with respect to connected compact groups.
We show that feature spaces of disentangled steerable convolutional neural networks are trivial representations.
arXiv Detail & Related papers (2024-01-17T14:30:46Z) - Deep Neural Networks with Efficient Guaranteed Invariances [77.99182201815763]
We address the problem of improving the performance and in particular the sample complexity of deep neural networks.
Group-equivariant convolutions are a popular approach to obtain equivariant representations.
We propose a multi-stream architecture, where each stream is invariant to a different transformation.
arXiv Detail & Related papers (2023-03-02T20:44:45Z) - A PAC-Bayesian Generalization Bound for Equivariant Networks [15.27608414735815]
We derive norm-based PAC-Bayesian generalization bounds for equivariant networks.
The bound characterizes the impact of group size, and multiplicity and degree of irreducible representations on the generalization error.
In general, the bound indicates that using larger group size in the model improves the generalization error substantiated by extensive numerical experiments.
arXiv Detail & Related papers (2022-10-24T12:07:03Z) - Equivariant Transduction through Invariant Alignment [71.45263447328374]
We introduce a novel group-equivariant architecture that incorporates a group-in hard alignment mechanism.
We find that our network's structure allows it to develop stronger equivariant properties than existing group-equivariant approaches.
We additionally find that it outperforms previous group-equivariant networks empirically on the SCAN task.
arXiv Detail & Related papers (2022-09-22T11:19:45Z) - Generalization capabilities of neural networks in lattice applications [0.0]
We investigate the advantages of adopting translationally equivariant neural networks in favor of non-equivariant ones.
We show that our best equivariant architectures can perform and generalize significantly better than their non-equivariant counterparts.
arXiv Detail & Related papers (2021-12-23T11:48:06Z) - Frame Averaging for Invariant and Equivariant Network Design [50.87023773850824]
We introduce Frame Averaging (FA), a framework for adapting known (backbone) architectures to become invariant or equivariant to new symmetry types.
We show that FA-based models have maximal expressive power in a broad setting.
We propose a new class of universal Graph Neural Networks (GNNs), universal Euclidean motion invariant point cloud networks, and Euclidean motion invariant Message Passing (MP) GNNs.
arXiv Detail & Related papers (2021-10-07T11:05:23Z) - Coordinate Independent Convolutional Networks -- Isometry and Gauge
Equivariant Convolutions on Riemannian Manifolds [70.32518963244466]
A major complication in comparison to flat spaces is that it is unclear in which alignment a convolution kernel should be applied on a manifold.
We argue that the particular choice of coordinatization should not affect a network's inference -- it should be coordinate independent.
A simultaneous demand for coordinate independence and weight sharing is shown to result in a requirement on the network to be equivariant.
arXiv Detail & Related papers (2021-06-10T19:54:19Z) - Universal Approximation Theorem for Equivariant Maps by Group CNNs [14.810452619505137]
This paper provides a unified method to obtain universal approximation theorems for equivariant maps by CNNs.
As its significant advantage, we can handle non-linear equivariant maps between infinite-dimensional spaces for non-compact groups.
arXiv Detail & Related papers (2020-12-27T07:09:06Z) - LieTransformer: Equivariant self-attention for Lie Groups [49.9625160479096]
Group equivariant neural networks are used as building blocks of group invariant neural networks.
We extend the scope of the literature to self-attention, that is emerging as a prominent building block of deep learning models.
We propose the LieTransformer, an architecture composed of LieSelfAttention layers that are equivariant to arbitrary Lie groups and their discrete subgroups.
arXiv Detail & Related papers (2020-12-20T11:02:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.