EventHDR: from Event to High-Speed HDR Videos and Beyond
- URL: http://arxiv.org/abs/2409.17029v1
- Date: Wed, 25 Sep 2024 15:32:07 GMT
- Title: EventHDR: from Event to High-Speed HDR Videos and Beyond
- Authors: Yunhao Zou, Ying Fu, Tsuyoshi Takatani, Yinqiang Zheng,
- Abstract summary: We present a recurrent convolutional neural network that reconstructs high-speed HDR videos from event sequences.
We also develop a new optical system to collect a real-world dataset of paired high-speed HDR videos and event streams.
- Score: 36.9225017403252
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Event cameras are innovative neuromorphic sensors that asynchronously capture the scene dynamics. Due to the event-triggering mechanism, such cameras record event streams with much shorter response latency and higher intensity sensitivity compared to conventional cameras. On the basis of these features, previous works have attempted to reconstruct high dynamic range (HDR) videos from events, but have either suffered from unrealistic artifacts or failed to provide sufficiently high frame rates. In this paper, we present a recurrent convolutional neural network that reconstruct high-speed HDR videos from event sequences, with a key frame guidance to prevent potential error accumulation caused by the sparse event data. Additionally, to address the problem of severely limited real dataset, we develop a new optical system to collect a real-world dataset with paired high-speed HDR videos and event streams, facilitating future research in this field. Our dataset provides the first real paired dataset for event-to-HDR reconstruction, avoiding potential inaccuracies from simulation strategies. Experimental results demonstrate that our method can generate high-quality, high-speed HDR videos. We further explore the potential of our work in cross-camera reconstruction and downstream computer vision tasks, including object detection, panoramic segmentation, optical flow estimation, and monocular depth estimation under HDR scenarios.
Related papers
- HDR Imaging for Dynamic Scenes with Events [2.750189317612375]
We propose an Event-based HDRI framework within a Self-supervised learning paradigm, which generalizes HDRI performance in real-world dynamic scenarios.
A self-supervised learning strategy is carried out by learning cross-domain conversions from blurry LDR images to sharp LDR images.
We construct large-scale synthetic and real-world datasets to evaluate the effectiveness of our method.
arXiv Detail & Related papers (2024-04-04T05:33:06Z) - Event-based Asynchronous HDR Imaging by Temporal Incident Light Modulation [54.64335350932855]
We propose a Pixel-Asynchronous HDR imaging system, based on key insights into the challenges in HDR imaging.
Our proposed Asyn system integrates the Dynamic Vision Sensors (DVS) with a set of LCD panels.
The LCD panels modulate the irradiance incident upon the DVS by altering their transparency, thereby triggering the pixel-independent event streams.
arXiv Detail & Related papers (2024-03-14T13:45:09Z) - EventAid: Benchmarking Event-aided Image/Video Enhancement Algorithms
with Real-captured Hybrid Dataset [55.12137324648253]
Event cameras are emerging imaging technology that offers advantages over conventional frame-based imaging sensors in dynamic range and sensing speed.
This paper focuses on five event-aided image and video enhancement tasks.
arXiv Detail & Related papers (2023-12-13T15:42:04Z) - Robust e-NeRF: NeRF from Sparse & Noisy Events under Non-Uniform Motion [67.15935067326662]
Event cameras offer low power, low latency, high temporal resolution and high dynamic range.
NeRF is seen as the leading candidate for efficient and effective scene representation.
We propose Robust e-NeRF, a novel method to directly and robustly reconstruct NeRFs from moving event cameras.
arXiv Detail & Related papers (2023-09-15T17:52:08Z) - Self-supervised HDR Imaging from Motion and Exposure Cues [14.57046548797279]
We propose a novel self-supervised approach for learnable HDR estimation that alleviates the need for HDR ground-truth labels.
Experimental results show that the HDR models trained using our proposed self-supervision approach achieve performance competitive with those trained under full supervision.
arXiv Detail & Related papers (2022-03-23T10:22:03Z) - Back to Event Basics: Self-Supervised Learning of Image Reconstruction
for Event Cameras via Photometric Constancy [0.0]
Event cameras are novel vision sensors that sample, in an asynchronous fashion, brightness increments with low latency and high temporal resolution.
We propose a novel, lightweight neural network for optical flow estimation that achieves high speed inference with only a minor drop in performance.
Results across multiple datasets show that the performance of the proposed self-supervised approach is in line with the state-of-the-art.
arXiv Detail & Related papers (2020-09-17T13:30:05Z) - Reducing the Sim-to-Real Gap for Event Cameras [64.89183456212069]
Event cameras are paradigm-shifting novel sensors that report asynchronous, per-pixel brightness changes called 'events' with unparalleled low latency.
Recent work has demonstrated impressive results using Convolutional Neural Networks (CNNs) for video reconstruction and optic flow with events.
We present strategies for improving training data for event based CNNs that result in 20-40% boost in performance of existing video reconstruction networks.
arXiv Detail & Related papers (2020-03-20T02:44:29Z) - EventSR: From Asynchronous Events to Image Reconstruction, Restoration,
and Super-Resolution via End-to-End Adversarial Learning [75.17497166510083]
Event cameras sense intensity changes and have many advantages over conventional cameras.
Some methods have been proposed to reconstruct intensity images from event streams.
The outputs are still in low resolution (LR), noisy, and unrealistic.
We propose a novel end-to-end pipeline that reconstructs LR images from event streams, enhances the image qualities and upsamples the enhanced images, called EventSR.
arXiv Detail & Related papers (2020-03-17T10:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.