Unveiling Ontological Commitment in Multi-Modal Foundation Models
- URL: http://arxiv.org/abs/2409.17109v1
- Date: Wed, 25 Sep 2024 17:24:27 GMT
- Title: Unveiling Ontological Commitment in Multi-Modal Foundation Models
- Authors: Mert Keser, Gesina Schwalbe, Niki Amini-Naieni, Matthias Rottmann, Alois Knoll,
- Abstract summary: Deep neural networks (DNNs) automatically learn rich representations of concepts and respective reasoning.
We propose a method that extracts the learned superclass hierarchy from a multimodal DNN for a given set of leaf concepts.
An initial evaluation study shows that meaningful ontological class hierarchies can be extracted from state-of-the-art foundation models.
- Score: 7.485653059927206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ontological commitment, i.e., used concepts, relations, and assumptions, are a corner stone of qualitative reasoning (QR) models. The state-of-the-art for processing raw inputs, though, are deep neural networks (DNNs), nowadays often based off from multimodal foundation models. These automatically learn rich representations of concepts and respective reasoning. Unfortunately, the learned qualitative knowledge is opaque, preventing easy inspection, validation, or adaptation against available QR models. So far, it is possible to associate pre-defined concepts with latent representations of DNNs, but extractable relations are mostly limited to semantic similarity. As a next step towards QR for validation and verification of DNNs: Concretely, we propose a method that extracts the learned superclass hierarchy from a multimodal DNN for a given set of leaf concepts. Under the hood we (1) obtain leaf concept embeddings using the DNN's textual input modality; (2) apply hierarchical clustering to them, using that DNNs encode semantic similarities via vector distances; and (3) label the such-obtained parent concepts using search in available ontologies from QR. An initial evaluation study shows that meaningful ontological class hierarchies can be extracted from state-of-the-art foundation models. Furthermore, we demonstrate how to validate and verify a DNN's learned representations against given ontologies. Lastly, we discuss potential future applications in the context of QR.
Related papers
- Reasoning with trees: interpreting CNNs using hierarchies [3.6763102409647526]
We introduce a framework that uses hierarchical segmentation techniques for faithful and interpretable explanations of Convolutional Neural Networks (CNNs)
Our method constructs model-based hierarchical segmentations that maintain the model's reasoning fidelity.
Experiments show that our framework, xAiTrees, delivers highly interpretable and faithful model explanations.
arXiv Detail & Related papers (2024-06-19T06:45:19Z) - SimpleMind adds thinking to deep neural networks [3.888848425698769]
Deep neural networks (DNNs) detect patterns in data and have shown versatility and strong performance in many computer vision applications.
DNNs alone are susceptible to obvious mistakes that violate simple, common sense concepts and are limited in their ability to use explicit knowledge to guide their search and decision making.
This paper introduces SimpleMind, an open-source software framework for Cognitive AI focused on medical image understanding.
arXiv Detail & Related papers (2022-12-02T03:38:20Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
We focus on a specific method, KENN, a Neural-Symbolic architecture that injects prior logical knowledge into a neural network.
In this paper, we propose an extension of KENN for relational data.
arXiv Detail & Related papers (2022-05-31T13:00:34Z) - Concept Embeddings for Fuzzy Logic Verification of Deep Neural Networks
in Perception Tasks [1.2246649738388387]
We present a simple, yet effective, approach to verify whether a trained convolutional neural network (CNN) respects specified symbolic background knowledge.
The knowledge may consist of any fuzzy predicate logic rules.
We show that this approach benefits from fuzziness and calibrating the concept outputs.
arXiv Detail & Related papers (2022-01-03T10:35:47Z) - Rethinking Nearest Neighbors for Visual Classification [56.00783095670361]
k-NN is a lazy learning method that aggregates the distance between the test image and top-k neighbors in a training set.
We adopt k-NN with pre-trained visual representations produced by either supervised or self-supervised methods in two steps.
Via extensive experiments on a wide range of classification tasks, our study reveals the generality and flexibility of k-NN integration.
arXiv Detail & Related papers (2021-12-15T20:15:01Z) - What Do Deep Nets Learn? Class-wise Patterns Revealed in the Input Space [88.37185513453758]
We propose a method to visualize and understand the class-wise knowledge learned by deep neural networks (DNNs) under different settings.
Our method searches for a single predictive pattern in the pixel space to represent the knowledge learned by the model for each class.
In the adversarial setting, we show that adversarially trained models tend to learn more simplified shape patterns.
arXiv Detail & Related papers (2021-01-18T06:38:41Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
Graph neural networks (GNNs) have become a popular approach to integrating structural inductive biases into NLP models.
We introduce a post-hoc method for interpreting the predictions of GNNs which identifies unnecessary edges.
We show that we can drop a large proportion of edges without deteriorating the performance of the model.
arXiv Detail & Related papers (2020-10-01T17:51:19Z) - Neural Networks Enhancement with Logical Knowledge [83.9217787335878]
We propose an extension of KENN for relational data.
The results show that KENN is capable of increasing the performances of the underlying neural network even in the presence relational data.
arXiv Detail & Related papers (2020-09-13T21:12:20Z) - TCNN: Triple Convolutional Neural Network Models for Retrieval-based
Question Answering System in E-commerce [6.1786972717541895]
Key solution to the IR based models is to retrieve the most similar knowledge entries of a given query from a QA knowledge base, and then rerank those knowledge entries with semantic matching models.
In this paper, we aim to improve an IR based e-commerce QA system-AliMe with proposed text matching models, including a basic Triple Convolutional Neural Network (TCNN) model and two Attention-based TCNN (ATCNN) models.
arXiv Detail & Related papers (2020-04-23T01:02:15Z) - Causality-aware counterfactual confounding adjustment for feature
representations learned by deep models [14.554818659491644]
Causal modeling has been recognized as a potential solution to many challenging problems in machine learning (ML)
We describe how a recently proposed counterfactual approach can still be used to deconfound the feature representations learned by deep neural network (DNN) models.
arXiv Detail & Related papers (2020-04-20T17:37:36Z) - Architecture Disentanglement for Deep Neural Networks [174.16176919145377]
We introduce neural architecture disentanglement (NAD) to explain the inner workings of deep neural networks (DNNs)
NAD learns to disentangle a pre-trained DNN into sub-architectures according to independent tasks, forming information flows that describe the inference processes.
Results show that misclassified images have a high probability of being assigned to task sub-architectures similar to the correct ones.
arXiv Detail & Related papers (2020-03-30T08:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.