Confident Teacher, Confident Student? A Novel User Study Design for Investigating the Didactic Potential of Explanations and their Impact on Uncertainty
- URL: http://arxiv.org/abs/2409.17157v1
- Date: Tue, 10 Sep 2024 12:59:50 GMT
- Title: Confident Teacher, Confident Student? A Novel User Study Design for Investigating the Didactic Potential of Explanations and their Impact on Uncertainty
- Authors: Teodor Chiaburu, Frank Haußer, Felix Bießmann,
- Abstract summary: We investigate the impact of explanations on human performance on a challenging visual task using Explainable Artificial Intelligence (XAI)
We find that users become more accurate in their annotations and demonstrate less uncertainty with AI assistance.
We also find negative effects of explanations: users tend to replicate the model's predictions more often when shown explanations.
- Score: 1.0855602842179624
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Evaluating the quality of explanations in Explainable Artificial Intelligence (XAI) is to this day a challenging problem, with ongoing debate in the research community. While some advocate for establishing standardized offline metrics, others emphasize the importance of human-in-the-loop (HIL) evaluation. Here we propose an experimental design to evaluate the potential of XAI in human-AI collaborative settings as well as the potential of XAI for didactics. In a user study with 1200 participants we investigate the impact of explanations on human performance on a challenging visual task - annotation of biological species in complex taxonomies. Our results demonstrate the potential of XAI in complex visual annotation tasks: users become more accurate in their annotations and demonstrate less uncertainty with AI assistance. The increase in accuracy was, however, not significantly different when users were shown the mere prediction of the model compared to when also providing an explanation. We also find negative effects of explanations: users tend to replicate the model's predictions more often when shown explanations, even when those predictions are wrong. When evaluating the didactic effects of explanations in collaborative human-AI settings, we find that users' annotations are not significantly better after performing annotation with AI assistance. This suggests that explanations in visual human-AI collaboration do not appear to induce lasting learning effects. All code and experimental data can be found in our GitHub repository: https://github.com/TeodorChiaburu/beexplainable.
Related papers
- Don't be Fooled: The Misinformation Effect of Explanations in Human-AI Collaboration [11.824688232910193]
We run a study on AI-assisted decision-making in which humans were supported by XAI.
Our findings reveal a misinformation effect when incorrect explanations accompany correct AI advice.
This effect causes humans to infer flawed reasoning strategies, hindering task execution and demonstrating impaired procedural knowledge.
arXiv Detail & Related papers (2024-09-19T14:34:20Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - How Well Do Feature-Additive Explainers Explain Feature-Additive
Predictors? [12.993027779814478]
We ask the question: can popular feature-additive explainers (e.g., LIME, SHAP, SHAPR, MAPLE, and PDP) explain feature-additive predictors?
Herein, we evaluate such explainers on ground truth that is analytically derived from the additive structure of a model.
Our results suggest that all explainers eventually fail to correctly attribute the importance of features, especially when a decision-making process involves feature interactions.
arXiv Detail & Related papers (2023-10-27T21:16:28Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
Second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level.
We demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.
arXiv Detail & Related papers (2023-06-14T23:24:01Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
The emphasis of XAI research appears to have turned to a more pragmatic explanation approach for better understanding.
An extensive area where cognitive science research may substantially influence XAI advancements is evaluating user knowledge and feedback.
We propose a framework to experiment with generating and evaluating the explanations on the grounds of different cognitive levels of understanding.
arXiv Detail & Related papers (2022-10-31T19:20:22Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
We conduct a mixed-methods study of how two different groups--people with and without AI background--perceive different types of AI explanations.
We find that (1) both groups showed unwarranted faith in numbers for different reasons and (2) each group found value in different explanations beyond their intended design.
arXiv Detail & Related papers (2021-07-28T17:32:04Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
We review recent works in the direction to attain Explainable Reinforcement Learning (XRL)
In critical situations where it is essential to justify and explain the agent's behaviour, better explainability and interpretability of RL models could help gain scientific insight on the inner workings of what is still considered a black box.
arXiv Detail & Related papers (2020-08-15T10:11:42Z) - Don't Explain without Verifying Veracity: An Evaluation of Explainable
AI with Video Activity Recognition [24.10997778856368]
This paper explores how explanation veracity affects user performance and agreement in intelligent systems.
We compare variations in explanation veracity for a video review and querying task.
Results suggest that low veracity explanations significantly decrease user performance and agreement.
arXiv Detail & Related papers (2020-05-05T17:06:46Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
We propose a novel paradigm of explainable active learning (XAL), by introducing techniques from the recently surging field of explainable AI (XAI) into an Active Learning setting.
Our study shows benefits of AI explanation as interfaces for machine teaching--supporting trust calibration and enabling rich forms of teaching feedback, and potential drawbacks--anchoring effect with the model judgment and cognitive workload.
arXiv Detail & Related papers (2020-01-24T22:52:18Z) - Deceptive AI Explanations: Creation and Detection [3.197020142231916]
We investigate how AI models can be used to create and detect deceptive explanations.
As an empirical evaluation, we focus on text classification and alter the explanations generated by GradCAM.
We evaluate the effect of deceptive explanations on users in an experiment with 200 participants.
arXiv Detail & Related papers (2020-01-21T16:41:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.