Free Independence and the Noncrossing Partition Lattice in Dual-Unitary Quantum Circuits
- URL: http://arxiv.org/abs/2409.17226v1
- Date: Wed, 25 Sep 2024 18:00:00 GMT
- Title: Free Independence and the Noncrossing Partition Lattice in Dual-Unitary Quantum Circuits
- Authors: Hyaline Junhe Chen, Jonah Kudler-Flam,
- Abstract summary: We investigate details of the chaotic dynamics of dual-unitary quantum circuits.
By writing the correlators as contractions of a class of quantum channels, we prove their exponential decay.
We also develop a replica trick for dual-unitary circuits, which may be useful and of interest in its own right.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate details of the chaotic dynamics of dual-unitary quantum circuits by evaluating all $2k$-point out-of-time-ordered correlators. For the generic class of circuits, by writing the correlators as contractions of a class of quantum channels, we prove their exponential decay. This implies that local operators separated in time approach free independence. Along the way, we develop a replica trick for dual-unitary circuits, which may be useful and of interest in its own right. We classify the relevant eigenstates of the replica transfer matrix by paths in the lattice of noncrossing partitions, combinatorial objects central to free probability theory. Interestingly, the noncrossing lattice emerges even for systems without randomness and with small onsite Hilbert space dimension.
Related papers
- Quantum Random Walks and Quantum Oscillator in an Infinite-Dimensional Phase Space [45.9982965995401]
We consider quantum random walks in an infinite-dimensional phase space constructed using Weyl representation of the coordinate and momentum operators.
We find conditions for their strong continuity and establish properties of their generators.
arXiv Detail & Related papers (2024-06-15T17:39:32Z) - Quantum information spreading in generalised dual-unitary circuits [44.99833362998488]
We show that local operators spread at the speed of light as in dual-unitary circuits.
We use these properties to find a closed-form expression for the entanglement membrane in these circuits.
arXiv Detail & Related papers (2023-12-05T18:09:27Z) - Bell inequalities with overlapping measurements [52.81011822909395]
We study Bell inequalities where measurements of different parties can have overlap.
This allows to accommodate problems in quantum information.
The scenarios considered show an interesting behaviour with respect to Hilbert space dimension, overlap, and symmetry.
arXiv Detail & Related papers (2023-03-03T18:11:05Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Crystalline Quantum Circuits [0.0]
Random quantum circuits continue to inspire a wide range of applications in quantum information science and many-body quantum physics.
Motivated by an interest in deterministic circuits with similar applications, we construct classes of textitnonrandom unitary Clifford circuits.
A full classification on the square lattice reveals, of particular interest, a "nonfractal good scrambling class" with dense operator spreading.
arXiv Detail & Related papers (2022-10-19T18:00:57Z) - Dual unitary circuits in random geometries [0.0]
We show that regularity of the lattice circuit is not crucial for exact solvability.
We consider a circuit where random 2-qubit dual unitary gates sit at intersections of random arrangements straight lines in two dimensions.
arXiv Detail & Related papers (2022-06-20T09:11:43Z) - Construction and the ergodicity properties of dual unitary quantum
circuits [0.0]
We consider one dimensional quantum circuits of the type, where the fundamental quantum gate is dual unitary.
We review various existing constructions for dual unitary gates and we supplement them with new ideas in a number of cases.
A brief mathematical treatment of the recurrence time in such models is presented in the Appendix by Roland Bacher and Denis Serre.
arXiv Detail & Related papers (2022-01-19T18:09:34Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - The principle of majorization: application to random quantum circuits [68.8204255655161]
Three classes of circuits were considered: (i) universal, (ii) classically simulatable, and (iii) neither universal nor classically simulatable.
We verified that all the families of circuits satisfy on average the principle of majorization.
Clear differences appear in the fluctuations of the Lorenz curves associated to states.
arXiv Detail & Related papers (2021-02-19T16:07:09Z) - From dual-unitary to quantum Bernoulli circuits: Role of the entangling
power in constructing a quantum ergodic hierarchy [0.0]
We study the apex of a putative quantum ergodic hierarchy which is Bernoulli.
We derive a condition based on the entangling power $e_p(U)$ of the basic two-particle unitary building block.
We construct a coupled quantum cat map which is dual-unitary for all local dimensions and a 2-unitary or perfect tensor for odd local dimensions.
arXiv Detail & Related papers (2021-01-12T16:21:50Z) - Correlations in Perturbed Dual-Unitary Circuits: Efficient Path-Integral
Formula [0.0]
We find four types of non-dual-unitary(and non-integrable) systems where the correlation functions are exactly given by the path-sum formula.
The degree of generality of the observed dynamical features remained unclear.
arXiv Detail & Related papers (2020-06-12T16:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.