Quantum information spreading in generalised dual-unitary circuits
- URL: http://arxiv.org/abs/2312.02940v2
- Date: Tue, 28 May 2024 17:23:21 GMT
- Title: Quantum information spreading in generalised dual-unitary circuits
- Authors: Alessandro Foligno, Pavel Kos, Bruno Bertini,
- Abstract summary: We show that local operators spread at the speed of light as in dual-unitary circuits.
We use these properties to find a closed-form expression for the entanglement membrane in these circuits.
- Score: 44.99833362998488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the spreading of quantum information in a recently introduced family of brickwork quantum circuits that generalises the dual-unitary class. These circuits are unitary in time, while their spatial dynamics is unitary only in a restricted subspace. First, we show that local operators spread at the speed of light as in dual-unitary circuits, i.e., the butterfly velocity takes the maximal value allowed by the geometry of the circuit. Then, we prove that the entanglement spreading can still be characterised exactly for a family of compatible initial states (in fact, for an extension of the compatible family of dual-unitary circuits) and that the asymptotic entanglement slope is again independent on the R\'enyi index. Remarkably, however, we find that the entanglement velocity is generically smaller than one. We use these properties to find a closed-form expression for the entanglement membrane in these circuits.
Related papers
- Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Fundamental charges for dual-unitary circuits [0.0]
Dual-unitary quantum circuits have recently attracted attention as an analytically tractable model of many-body quantum dynamics.
We show that for 1+1D dual-unitary circuits the set of width-$w$ conserved densities is in one-to-one correspondence with the set of width-$w$ solitons.
We also establish a link between fermionic models and dual-unitary circuits, advancing our understanding of what kinds of physics can be explored in this framework.
arXiv Detail & Related papers (2023-12-21T18:59:01Z) - The entanglement membrane in exactly solvable lattice models [0.0]
Entanglement membrane theory describes entanglement dynamics in chaotic quantum many-body systems.
We compute the entanglement line tension in a class of exactly solvable yet chaotic unitary circuits.
Our results shed light on entanglement membrane theory in microscopic Floquet lattice models.
arXiv Detail & Related papers (2023-12-19T19:00:02Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - From dual-unitary to biunitary: a 2-categorical model for
exactly-solvable many-body quantum dynamics [0.0]
Prosen has recently described an alternative model called 'dual-unitary interactions round-a-face'
We present a 2-categorical framework that simultaneously generalizes these two existing models.
arXiv Detail & Related papers (2023-02-14T19:00:03Z) - From Dual Unitarity to Generic Quantum Operator Spreading [0.0]
We study the effect of weakly broken dual-unitarity on the spreading of local operators.
We find that the butterfly velocity and diffusion constant are determined by a small set of microscopic quantities.
arXiv Detail & Related papers (2022-10-24T18:00:04Z) - Growth of entanglement of generic states under dual-unitary dynamics [77.34726150561087]
Dual-unitary circuits are a class of locally-interacting quantum many-body systems.
In particular, they admit a class of solvable" initial states for which, in the thermodynamic limit, one can access the full non-equilibrium dynamics.
We show that in this case the entanglement increment during a time step is sub-maximal for finite times, however, it approaches the maximal value in the infinite-time limit.
arXiv Detail & Related papers (2022-07-29T18:20:09Z) - Circuits of space and time quantum channels [0.0]
We show that noise unbiased around the dual-unitary family leads to exactly solvable models, even if dual-unitarity is strongly violated.
We prove that any channel unital in both space and time directions can be written as an affine combination of a particular class of dual-unitary gates.
arXiv Detail & Related papers (2022-06-24T08:35:17Z) - LOv-Calculus: A Graphical Language for Linear Optical Quantum Circuits [58.720142291102135]
We introduce the LOv-calculus, a graphical language for reasoning about linear optical quantum circuits.
Two LOv-circuits represent the same quantum process if and only if one can be transformed into the other with the rules of the LOv-calculus.
arXiv Detail & Related papers (2022-04-25T16:59:26Z) - A shortcut to adiabaticity in a cavity with a moving mirror [58.720142291102135]
We describe for the first time how to implement shortcuts to adiabaticity in quantum field theory.
The shortcuts take place whenever there is no dynamical Casimir effect.
We obtain a fundamental limit for the efficiency of an Otto cycle with the quantum field as a working system.
arXiv Detail & Related papers (2022-02-01T20:40:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.