Democratizing Signal Processing and Machine Learning: Math Learning Equity for Elementary and Middle School Students
- URL: http://arxiv.org/abs/2409.17304v1
- Date: Wed, 25 Sep 2024 19:28:12 GMT
- Title: Democratizing Signal Processing and Machine Learning: Math Learning Equity for Elementary and Middle School Students
- Authors: Namrata Vaswani, Mohamed Y. Selim, Renee Serrell Gibert,
- Abstract summary: Signal Processing (SP) and Machine Learning (ML) rely on good math and coding knowledge.
Many students are not able to build a strong foundation in arithmetic in elementary school.
This article discusses how SP faculty and graduate students can play an important role in starting, and participating in, out-of-school math support programs.
- Score: 15.998017974714022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Signal Processing (SP) and Machine Learning (ML) rely on good math and coding knowledge, in particular, linear algebra, probability, and complex numbers. A good grasp of these relies on scalar algebra learned in middle school. The ability to understand and use scalar algebra well, in turn, relies on a good foundation in basic arithmetic. Because of various systemic barriers, many students are not able to build a strong foundation in arithmetic in elementary school. This leads them to struggle with algebra and everything after that. Since math learning is cumulative, the gap between those without a strong early foundation and everyone else keeps increasing over the school years and becomes difficult to fill in college. In this article we discuss how SP faculty and graduate students can play an important role in starting, and participating in, university-run (or other) out-of-school math support programs to supplement students' learning. Two example programs run by the authors (CyMath at ISU and Ab7G at Purdue) are briefly described. The second goal of this article is to use our perspective as SP, and engineering, educators who have seen the long-term impact of elementary school math teaching policies, to provide some simple almost zero cost suggestions that elementary schools could adopt to improve math learning: (i) more math practice in school, (ii) send small amounts of homework (individual work is critical in math), and (iii) parent awareness (math resources, need for early math foundation, clear in-school test information and sharing of feedback from the tests). In summary, good early math support (in school and through out-of-school programs) can help make SP and ML more accessible.
Related papers
- LeanAgent: Lifelong Learning for Formal Theorem Proving [85.39415834798385]
We present LeanAgent, a novel lifelong learning framework for formal theorem proving.
LeanAgent continuously generalizes to and improves on ever-expanding mathematical knowledge.
It successfully proves 155 theorems previously unproved formally by humans across 23 diverse Lean repositories.
arXiv Detail & Related papers (2024-10-08T17:11:24Z) - MathBench: Evaluating the Theory and Application Proficiency of LLMs with a Hierarchical Mathematics Benchmark [82.64129627675123]
MathBench is a new benchmark that rigorously assesses the mathematical capabilities of large language models.
MathBench spans a wide range of mathematical disciplines, offering a detailed evaluation of both theoretical understanding and practical problem-solving skills.
arXiv Detail & Related papers (2024-05-20T17:52:29Z) - FineMath: A Fine-Grained Mathematical Evaluation Benchmark for Chinese Large Language Models [44.63505885248145]
FineMath is a fine-grained mathematical evaluation benchmark dataset for assessing Chinese Large Language Models (LLMs)
FineMath is created to cover the major key mathematical concepts taught in elementary school math, which are divided into 17 categories of math word problems.
All the 17 categories of math word problems are manually annotated with their difficulty levels according to the number of reasoning steps required to solve these problems.
arXiv Detail & Related papers (2024-03-12T15:32:39Z) - Machine learning and information theory concepts towards an AI
Mathematician [77.63761356203105]
The current state-of-the-art in artificial intelligence is impressive, especially in terms of mastery of language, but not so much in terms of mathematical reasoning.
This essay builds on the idea that current deep learning mostly succeeds at system 1 abilities.
It takes an information-theoretical posture to ask questions about what constitutes an interesting mathematical statement.
arXiv Detail & Related papers (2024-03-07T15:12:06Z) - MathScale: Scaling Instruction Tuning for Mathematical Reasoning [70.89605383298331]
Large language models (LLMs) have demonstrated remarkable capabilities in problem-solving.
However, their proficiency in solving mathematical problems remains inadequate.
We propose MathScale, a simple and scalable method to create high-quality mathematical reasoning data.
arXiv Detail & Related papers (2024-03-05T11:42:59Z) - InternLM-Math: Open Math Large Language Models Toward Verifiable Reasoning [98.53491178426492]
We open-source our math reasoning LLMs InternLM-Math which is continue pre-trained from InternLM2.
We unify chain-of-thought reasoning, reward modeling, formal reasoning, data augmentation, and code interpreter in a unified seq2seq format.
Our pre-trained model achieves 30.3 on the MiniF2F test set without fine-tuning.
arXiv Detail & Related papers (2024-02-09T11:22:08Z) - Peano: Learning Formal Mathematical Reasoning [35.086032962873226]
General mathematical reasoning is computationally undecidable, but humans routinely solve new problems.
We posit that central to both puzzles is the structure of procedural abstractions underlying mathematics.
We explore this idea in a case study on 5 sections of beginning algebra on the Khan Academy platform.
arXiv Detail & Related papers (2022-11-29T01:42:26Z) - JiuZhang: A Chinese Pre-trained Language Model for Mathematical Problem
Understanding [74.12405417718054]
This paper aims to advance the mathematical intelligence of machines by presenting the first Chinese mathematical pre-trained language model(PLM)
Unlike other standard NLP tasks, mathematical texts are difficult to understand, since they involve mathematical terminology, symbols and formulas in the problem statement.
We design a novel curriculum pre-training approach for improving the learning of mathematical PLMs, consisting of both basic and advanced courses.
arXiv Detail & Related papers (2022-06-13T17:03:52Z) - Discrete Math with Programming: A Principled Approach [0.0]
It has long been argued that discrete math is better taught with programming.
This paper introduces an approach that supports all central concepts of discrete math.
Math and logical statements can be expressed precisely at a high level and be executed on a computer.
arXiv Detail & Related papers (2020-11-28T03:41:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.