Optical Lens Attack on Deep Learning Based Monocular Depth Estimation
- URL: http://arxiv.org/abs/2409.17376v1
- Date: Wed, 25 Sep 2024 21:44:14 GMT
- Title: Optical Lens Attack on Deep Learning Based Monocular Depth Estimation
- Authors: Ce Zhou, Qiben Yan, Daniel Kent, Guangjing Wang, Ziqi Zhang, Hayder Radha,
- Abstract summary: We introduce LensAttack, a physical attack that involves strategically placing optical lenses on the camera of an autonomous vehicle.
We simulate the attack and evaluate its real-world performance in driving scenarios to demonstrate its effect on state-of-the-art MDE models.
- Score: 12.91903197852097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monocular Depth Estimation (MDE) plays a crucial role in vision-based Autonomous Driving (AD) systems. It utilizes a single-camera image to determine the depth of objects, facilitating driving decisions such as braking a few meters in front of a detected obstacle or changing lanes to avoid collision. In this paper, we investigate the security risks associated with monocular vision-based depth estimation algorithms utilized by AD systems. By exploiting the vulnerabilities of MDE and the principles of optical lenses, we introduce LensAttack, a physical attack that involves strategically placing optical lenses on the camera of an autonomous vehicle to manipulate the perceived object depths. LensAttack encompasses two attack formats: concave lens attack and convex lens attack, each utilizing different optical lenses to induce false depth perception. We begin by constructing a mathematical model of our attack, incorporating various attack parameters. Subsequently, we simulate the attack and evaluate its real-world performance in driving scenarios to demonstrate its effect on state-of-the-art MDE models. The results highlight the significant impact of LensAttack on the accuracy of depth estimation in AD systems.
Related papers
- Optical Lens Attack on Monocular Depth Estimation for Autonomous Driving [12.302132670292316]
We present LensAttack, a physical attack that strategically places optical lenses on the camera of an autonomous vehicle to manipulate the perceived object depths.
We first develop a mathematical model that outlines the parameters of the attack, followed by simulations and real-world evaluations to assess its efficacy on state-of-the-art MDE models.
The results reveal that LensAttack can significantly disrupt the depth estimation processes in AD systems, posing a serious threat to their reliability and safety.
arXiv Detail & Related papers (2024-10-31T20:23:27Z) - MonoTDP: Twin Depth Perception for Monocular 3D Object Detection in
Adverse Scenes [49.21187418886508]
This paper proposes a monocular 3D detection model designed to perceive twin depth in adverse scenes, termed MonoTDP.
We first introduce an adaptive learning strategy to aid the model in handling uncontrollable weather conditions, significantly resisting degradation caused by various degrading factors.
Then, to address the depth/content loss in adverse regions, we propose a novel twin depth perception module that simultaneously estimates scene and object depth.
arXiv Detail & Related papers (2023-05-18T13:42:02Z) - Fully Self-Supervised Depth Estimation from Defocus Clue [79.63579768496159]
We propose a self-supervised framework that estimates depth purely from a sparse focal stack.
We show that our framework circumvents the needs for the depth and AIF image ground-truth, and receives superior predictions.
arXiv Detail & Related papers (2023-03-19T19:59:48Z) - Image Masking for Robust Self-Supervised Monocular Depth Estimation [12.435468563991174]
Self-supervised monocular depth estimation is a salient task for 3D scene understanding.
We propose MIMDepth, a method that adapts masked image modeling for self-supervised monocular depth estimation.
arXiv Detail & Related papers (2022-10-05T15:57:53Z) - Physical Attack on Monocular Depth Estimation with Optimal Adversarial
Patches [18.58673451901394]
We develop an attack against learning-based Monocular Depth Estimation (MDE)
We balance the stealth and effectiveness of our attack with object-oriented adversarial design, sensitive region localization, and natural style camouflage.
Experimental results show that our method can generate stealthy, effective, and robust adversarial patches for different target objects and models.
arXiv Detail & Related papers (2022-07-11T08:59:09Z) - Towards Scale-Aware, Robust, and Generalizable Unsupervised Monocular
Depth Estimation by Integrating IMU Motion Dynamics [74.1720528573331]
Unsupervised monocular depth and ego-motion estimation has drawn extensive research attention in recent years.
We propose DynaDepth, a novel scale-aware framework that integrates information from vision and IMU motion dynamics.
We validate the effectiveness of DynaDepth by conducting extensive experiments and simulations on the KITTI and Make3D datasets.
arXiv Detail & Related papers (2022-07-11T07:50:22Z) - Attentive and Contrastive Learning for Joint Depth and Motion Field
Estimation [76.58256020932312]
Estimating the motion of the camera together with the 3D structure of the scene from a monocular vision system is a complex task.
We present a self-supervised learning framework for 3D object motion field estimation from monocular videos.
arXiv Detail & Related papers (2021-10-13T16:45:01Z) - Unsupervised Monocular Depth Perception: Focusing on Moving Objects [5.489557739480878]
In this paper, we show that deliberately manipulating photometric errors can efficiently deal with difficulties better.
We first propose an outlier masking technique that considers the occluded or dynamic pixels as statistical outliers in the photometric error map.
With the outlier masking, the network learns the depth of objects that move in the opposite direction to the camera more accurately.
arXiv Detail & Related papers (2021-08-30T08:45:02Z) - Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion
based Perception in Autonomous Driving Under Physical-World Attacks [62.923992740383966]
We present the first study of security issues of MSF-based perception in AD systems.
We generate a physically-realizable, adversarial 3D-printed object that misleads an AD system to fail in detecting it and thus crash into it.
Our results show that the attack achieves over 90% success rate across different object types and MSF.
arXiv Detail & Related papers (2021-06-17T05:11:07Z) - Learning Monocular Depth in Dynamic Scenes via Instance-Aware Projection
Consistency [114.02182755620784]
We present an end-to-end joint training framework that explicitly models 6-DoF motion of multiple dynamic objects, ego-motion and depth in a monocular camera setup without supervision.
Our framework is shown to outperform the state-of-the-art depth and motion estimation methods.
arXiv Detail & Related papers (2021-02-04T14:26:42Z) - SynDistNet: Self-Supervised Monocular Fisheye Camera Distance Estimation
Synergized with Semantic Segmentation for Autonomous Driving [37.50089104051591]
State-of-the-art self-supervised learning approaches for monocular depth estimation usually suffer from scale ambiguity.
This paper introduces a novel multi-task learning strategy to improve self-supervised monocular distance estimation on fisheye and pinhole camera images.
arXiv Detail & Related papers (2020-08-10T10:52:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.