Examining the Impact of Optical Aberrations to Image Classification and Object Detection Models
- URL: http://arxiv.org/abs/2504.18510v1
- Date: Fri, 25 Apr 2025 17:23:47 GMT
- Title: Examining the Impact of Optical Aberrations to Image Classification and Object Detection Models
- Authors: Patrick Müller, Alexander Braun, Margret Keuper,
- Abstract summary: Vision models have to behave in a robust way to disturbances such as noise or blur.<n>This paper studies two datasets of blur corruptions, which we denote OpticsBench and LensCorruptions.<n> Evaluations for image classification and object detection on ImageNet and MSCOCO show that for a variety of different pre-trained models, the performance on OpticsBench and LensCorruptions varies significantly.
- Score: 58.98742597810023
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep neural networks (DNNs) have proven to be successful in various computer vision applications such that models even infer in safety-critical situations. Therefore, vision models have to behave in a robust way to disturbances such as noise or blur. While seminal benchmarks exist to evaluate model robustness to diverse corruptions, blur is often approximated in an overly simplistic way to model defocus, while ignoring the different blur kernel shapes that result from optical systems. To study model robustness against realistic optical blur effects, this paper proposes two datasets of blur corruptions, which we denote OpticsBench and LensCorruptions. OpticsBench examines primary aberrations such as coma, defocus, and astigmatism, i.e. aberrations that can be represented by varying a single parameter of Zernike polynomials. To go beyond the principled but synthetic setting of primary aberrations, LensCorruptions samples linear combinations in the vector space spanned by Zernike polynomials, corresponding to 100 real lenses. Evaluations for image classification and object detection on ImageNet and MSCOCO show that for a variety of different pre-trained models, the performance on OpticsBench and LensCorruptions varies significantly, indicating the need to consider realistic image corruptions to evaluate a model's robustness against blur.
Related papers
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANdom RAy Consensus (RANRAC) is an efficient approach to eliminate the effect of inconsistent data.
We formulate a fuzzy adaption of the RANSAC paradigm, enabling its application to large scale models.
Results indicate significant improvements compared to state-of-the-art robust methods for novel-view synthesis.
arXiv Detail & Related papers (2023-12-15T13:33:09Z) - Learning Robust Multi-Scale Representation for Neural Radiance Fields
from Unposed Images [65.41966114373373]
We present an improved solution to the neural image-based rendering problem in computer vision.
The proposed approach could synthesize a realistic image of the scene from a novel viewpoint at test time.
arXiv Detail & Related papers (2023-11-08T08:18:23Z) - Classification robustness to common optical aberrations [64.08840063305313]
This paper proposes OpticsBench, a benchmark for investigating robustness to realistic, practically relevant optical blur effects.
Experiments on ImageNet show that for a variety of different pre-trained DNNs, the performance varies strongly compared to disk-shaped kernels.
We show on ImageNet-100 with OpticsAugment that can be increased by using optical kernels as data augmentation.
arXiv Detail & Related papers (2023-08-29T08:36:00Z) - Deep Learning-Based Defect Classification and Detection in SEM Images [1.9206693386750882]
In particular, we train RetinaNet models using different ResNet, VGGNet architectures as backbone.
We propose a preference-based ensemble strategy to combine the output predictions from different models in order to achieve better performance on classification and detection of defects.
arXiv Detail & Related papers (2022-06-20T16:34:11Z) - Light Lies: Optical Adversarial Attack [24.831391763610046]
This paper introduces an optical adversarial attack, which physically alters the light field information arriving at the image sensor so that the classification model yields misclassification.
We present experiments based on both simulation and a real hardware optical system, from which the feasibility of the proposed optical attack is demonstrated.
arXiv Detail & Related papers (2021-06-18T04:20:49Z) - Improving robustness against common corruptions with frequency biased
models [112.65717928060195]
unseen image corruptions can cause a surprisingly large drop in performance.
Image corruption types have different characteristics in the frequency spectrum and would benefit from a targeted type of data augmentation.
We propose a new regularization scheme that minimizes the total variation (TV) of convolution feature-maps to increase high-frequency robustness.
arXiv Detail & Related papers (2021-03-30T10:44:50Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
We propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of the same scene from different lens should be the same.
We leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters.
Our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art methods.
arXiv Detail & Related papers (2020-11-30T08:23:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.