SSTP: Efficient Sample Selection for Trajectory Prediction
- URL: http://arxiv.org/abs/2409.17385v2
- Date: Thu, 20 Mar 2025 03:32:59 GMT
- Title: SSTP: Efficient Sample Selection for Trajectory Prediction
- Authors: Ruining Yang, Yi Xu, Yun Fu, Lili Su,
- Abstract summary: Training advanced trajectory prediction models on large-scale datasets is time-consuming and computationally expensive.<n>We propose the Sample Selection for Trajectory Prediction framework, which constructs a compact yet balanced dataset for trajectory prediction.<n>SSTP exhibits strong generalization and robustness, and the selected subset is model-agnostic, offering a broadly applicable solution.
- Score: 46.9148610403273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory prediction is a core task in autonomous driving. However, training advanced trajectory prediction models on large-scale datasets is both time-consuming and computationally expensive. In addition, the imbalanced distribution of driving scenarios often biases models toward data-rich cases, limiting performance in safety-critical, data-scarce conditions. To address these challenges, we propose the Sample Selection for Trajectory Prediction (SSTP) framework, which constructs a compact yet balanced dataset for trajectory prediction. SSTP consists of two main stages (1) Extraction, in which a pretrained trajectory prediction model computes gradient vectors for each sample to capture their influence on parameter updates; and (2) Selection, where a submodular function is applied to greedily choose a representative subset that covers diverse driving scenarios. This approach significantly reduces the dataset size and mitigates scenario imbalance, without sacrificing prediction accuracy and even improving in high-density cases. We evaluate our proposed SSTP on the Argoverse 1 and Argoverse 2 benchmarks using a wide range of recent state-of-the-art models. Our experiments demonstrate that SSTP achieves comparable performance to full-dataset training using only half the data while delivering substantial improvements in high-density traffic scenes and significantly reducing training time. Importantly, SSTP exhibits strong generalization and robustness, and the selected subset is model-agnostic, offering a broadly applicable solution.
Related papers
- Can Pre-training Indicators Reliably Predict Fine-tuning Outcomes of LLMs? [32.04523360747506]
We construct a dataset using 50 1B parameter LLM variants with systematically varied pre-training configurations.
We introduce novel unsupervised and supervised proxy metrics derived from pre-training that successfully reduce the relative performance prediction error rate by over 50%.
arXiv Detail & Related papers (2025-04-16T21:19:09Z) - Critical Example Mining for Vehicle Trajectory Prediction using Flow-based Generative Models [10.40439055916036]
This paper proposes a data-driven approach to estimate the rareness of the trajectories.
By combining the rareness estimation of observations with whole trajectories, the proposed method effectively identifies a subset of data that is relatively hard to predict.
arXiv Detail & Related papers (2024-10-21T15:02:30Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - TrACT: A Training Dynamics Aware Contrastive Learning Framework for Long-tail Trajectory Prediction [7.3292387742640415]
We propose to incorporate richer training dynamics information into a prototypical contrastive learning framework.
We conduct empirical evaluations of our approach using two large-scale naturalistic datasets.
arXiv Detail & Related papers (2024-04-18T23:12:46Z) - A Closer Look at the Few-Shot Adaptation of Large Vision-Language Models [19.17722702457403]
We show that state-of-the-artETL approaches exhibit strong performance only in narrowly-defined experimental setups.
We propose a CLass-Adaptive linear Probe (CLAP) objective, whose balancing term is optimized via an adaptation of the general Augmented Lagrangian method.
arXiv Detail & Related papers (2023-12-20T02:58:25Z) - Distil the informative essence of loop detector data set: Is
network-level traffic forecasting hungry for more data? [0.8002196839441036]
We propose an uncertainty-aware traffic forecasting framework to explore how many samples of loop data are truly effective for training forecasting models.
The proposed methodology proves valuable in evaluating large traffic datasets' true information content.
arXiv Detail & Related papers (2023-10-31T11:23:10Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - Collaborative Uncertainty Benefits Multi-Agent Multi-Modal Trajectory Forecasting [61.02295959343446]
This work first proposes a novel concept, collaborative uncertainty (CU), which models the uncertainty resulting from interaction modules.
We build a general CU-aware regression framework with an original permutation-equivariant uncertainty estimator to do both tasks of regression and uncertainty estimation.
We apply the proposed framework to current SOTA multi-agent trajectory forecasting systems as a plugin module.
arXiv Detail & Related papers (2022-07-11T21:17:41Z) - Large Scale Autonomous Driving Scenarios Clustering with Self-supervised
Feature Extraction [6.804209932400134]
This article proposes a comprehensive data clustering framework for a large set of vehicle driving data.
Our approach thoroughly considers the traffic elements, including both in-traffic agent objects and map information.
With the newly designed driving data clustering evaluation metrics based on data-augmentation, the accuracy assessment does not require a human-labeled data-set.
arXiv Detail & Related papers (2021-03-30T06:22:40Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
Vehicle trajectory prediction tasks have been commonly tackled from two perspectives: knowledge-driven or data-driven.
In this paper, we propose to learn a "Realistic Residual Block" (RRB) which effectively connects these two perspectives.
Our proposed method outputs realistic predictions by confining the residual range and taking into account its uncertainty.
arXiv Detail & Related papers (2021-03-08T16:03:09Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z) - Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow
Profile [15.875569404476495]
We focus on a tensor-based prediction and propose several practical techniques to improve prediction.
For long-term prediction specifically, we propose the "Tensor Decomposition + 2-Dimensional Auto-Regressive Moving Average (2D-ARMA)" model.
For short-term prediction, we propose to conduct tensor completion based on tensor clustering to avoid oversimplifying and ensure accuracy.
arXiv Detail & Related papers (2020-04-23T08:30:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.