Distil the informative essence of loop detector data set: Is
network-level traffic forecasting hungry for more data?
- URL: http://arxiv.org/abs/2310.20366v1
- Date: Tue, 31 Oct 2023 11:23:10 GMT
- Title: Distil the informative essence of loop detector data set: Is
network-level traffic forecasting hungry for more data?
- Authors: Guopeng Li, Victor L. Knoop, J.W.C.(Hans) van Lint
- Abstract summary: We propose an uncertainty-aware traffic forecasting framework to explore how many samples of loop data are truly effective for training forecasting models.
The proposed methodology proves valuable in evaluating large traffic datasets' true information content.
- Score: 0.8002196839441036
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Network-level traffic condition forecasting has been intensively studied for
decades. Although prediction accuracy has been continuously improved with
emerging deep learning models and ever-expanding traffic data, traffic
forecasting still faces many challenges in practice. These challenges include
the robustness of data-driven models, the inherent unpredictability of traffic
dynamics, and whether further improvement of traffic forecasting requires more
sensor data. In this paper, we focus on this latter question and particularly
on data from loop detectors. To answer this, we propose an uncertainty-aware
traffic forecasting framework to explore how many samples of loop data are
truly effective for training forecasting models. Firstly, the model design
combines traffic flow theory with graph neural networks, ensuring the
robustness of prediction and uncertainty quantification. Secondly, evidential
learning is employed to quantify different sources of uncertainty in a single
pass. The estimated uncertainty is used to "distil" the essence of the dataset
that sufficiently covers the information content. Results from a case study of
a highway network around Amsterdam show that, from 2018 to 2021, more than 80\%
of the data during daytime can be removed. The remaining 20\% samples have
equal prediction power for training models. This result suggests that indeed
large traffic datasets can be subdivided into significantly smaller but equally
informative datasets. From these findings, we conclude that the proposed
methodology proves valuable in evaluating large traffic datasets' true
information content. Further extensions, such as extracting smaller, spatially
non-redundant datasets, are possible with this method.
Related papers
- Incorporating Long-term Data in Training Short-term Traffic Prediction Model [6.392992843318724]
Two datasets containing taxi and bike usage spanning over eight years in New York were used to test such effects.
Experiments were conducted to assess the precision of models trained with data in the most recent 12, 24, 48, and 96 months.
It was found that the training set encompassing 96 months, at times, resulted in diminished accuracy, which might be owing to disparities between historical traffic patterns and present ones.
arXiv Detail & Related papers (2024-10-16T01:22:01Z) - Energy-Guided Data Sampling for Traffic Prediction with Mini Training Datasets [13.065729535009925]
We propose an innovative solution that merges Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) architecture to enhance the prediction of traffic flow dynamics.
A key revelation of our research is the feasibility of sampling training data for large traffic systems from simulations conducted on smaller traffic systems.
arXiv Detail & Related papers (2024-03-27T15:57:42Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting [65.71129509623587]
Road traffic forecasting plays a critical role in smart city initiatives and has experienced significant advancements thanks to the power of deep learning.
However, the promising results achieved on current public datasets may not be applicable to practical scenarios.
We introduce the LargeST benchmark dataset, which includes a total of 8,600 sensors in California with a 5-year time coverage.
arXiv Detail & Related papers (2023-06-14T05:48:36Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals.
We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches.
The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort.
arXiv Detail & Related papers (2021-04-27T18:17:42Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
Vehicle trajectory prediction tasks have been commonly tackled from two perspectives: knowledge-driven or data-driven.
In this paper, we propose to learn a "Realistic Residual Block" (RRB) which effectively connects these two perspectives.
Our proposed method outputs realistic predictions by confining the residual range and taking into account its uncertainty.
arXiv Detail & Related papers (2021-03-08T16:03:09Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
We propose a method to generate artificial traffic-related training data for deep traffic light detectors.
This data is generated using basic non-realistic computer graphics to blend fake traffic scenes on top of arbitrary image backgrounds.
It also tackles the intrinsic data imbalance problem in traffic light datasets, caused mainly by the low amount of samples of the yellow state.
arXiv Detail & Related papers (2020-11-07T19:57:22Z) - Short-Term Traffic Forecasting Using High-Resolution Traffic Data [2.0625936401496237]
This paper develops a data-driven toolkit for traffic forecasting using high-resolution (a.k.a. event-based) traffic data.
The proposed methods are verified using high-resolution data obtained from a real-world traffic network in Abu Dhabi, UAE.
arXiv Detail & Related papers (2020-06-22T14:26:19Z) - Traffic Flow Forecast of Road Networks with Recurrent Neural Networks [0.0]
The forecast of traffic flow is indispensable for an efficient intelligent transportation system.
In our work, this prediction is performed with various recurrent neural networks.
Most often the vector output model with gated recurrent units achieved the smallest error on the test set.
arXiv Detail & Related papers (2020-06-08T15:17:58Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
We propose a privacy-preserving machine learning technique named Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction.
FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism.
It is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models.
arXiv Detail & Related papers (2020-03-19T13:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.