Pre-Finetuning with Impact Duration Awareness for Stock Movement Prediction
- URL: http://arxiv.org/abs/2409.17419v1
- Date: Wed, 25 Sep 2024 23:06:55 GMT
- Title: Pre-Finetuning with Impact Duration Awareness for Stock Movement Prediction
- Authors: Chr-Jr Chiu, Chung-Chi Chen, Hen-Hsen Huang, Hsin-Hsi Chen,
- Abstract summary: This paper introduces a novel dataset, the Impact Duration Estimation dataset (IDED), specifically designed to estimate impact duration based on investor opinions.
Our research establishes that pre-finetuning language models with IDED can enhance performance in text-based stock movement predictions.
- Score: 25.67779910446609
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Understanding the duration of news events' impact on the stock market is crucial for effective time-series forecasting, yet this facet is largely overlooked in current research. This paper addresses this research gap by introducing a novel dataset, the Impact Duration Estimation Dataset (IDED), specifically designed to estimate impact duration based on investor opinions. Our research establishes that pre-finetuning language models with IDED can enhance performance in text-based stock movement predictions. In addition, we juxtapose our proposed pre-finetuning task with sentiment analysis pre-finetuning, further affirming the significance of learning impact duration. Our findings highlight the promise of this novel research direction in stock movement prediction, offering a new avenue for financial forecasting. We also provide the IDED and pre-finetuned language models under the CC BY-NC-SA 4.0 license for academic use, fostering further exploration in this field.
Related papers
- Wisdom of the Crowds in Forecasting: Forecast Summarization for Supporting Future Event Prediction [17.021220773165016]
Future Event Prediction (FEP) is an essential activity whose demand and application range across multiple domains.
One forecasting way is to gather and aggregate collective opinions on the future to make predictions as cumulative perspectives carry the potential to help estimating the likelihood of upcoming events.
In this work, we organize the existing research and frameworks that aim to support future event prediction based on crowd wisdom through aggregating individual forecasts.
arXiv Detail & Related papers (2025-02-12T08:35:10Z) - A Hype-Adjusted Probability Measure for NLP Stock Return Forecasting [6.658767709779308]
This article introduces a Hype-Adjusted Probability Measure in the context of a new Natural Language Processing (NLP) approach for stock return and volatility forecasting.
A novel sentiment score equation is proposed to represent the impact of intraday news on forecasting next-period stock return and volatility for selected U.S. semiconductor tickers.
arXiv Detail & Related papers (2024-12-10T15:23:31Z) - Deconfounding Time Series Forecasting [1.5967186772129907]
Time series forecasting is a critical task in various domains, where accurate predictions can drive informed decision-making.
Traditional forecasting methods often rely on current observations of variables to predict future outcomes.
We propose an enhanced forecasting approach that incorporates representations of latent confounders derived from historical data.
arXiv Detail & Related papers (2024-10-27T12:45:42Z) - Future-Guided Learning: A Predictive Approach To Enhance Time-Series Forecasting [4.866362841501992]
We introduce Future-Guided Learning, an approach that enhances time-series event forecasting through a dynamic feedback mechanism inspired by predictive coding.
Our method involves two models: a detection model that analyzes future data to identify critical events and a forecasting model that predicts these events based on current data.
We validate our approach on a variety of tasks, demonstrating a 44.8% increase in AUC-ROC for seizure prediction using EEG data, and a 48.7% reduction in MSE for forecasting in nonlinear dynamical systems.
arXiv Detail & Related papers (2024-10-19T21:22:55Z) - Human Action Anticipation: A Survey [86.415721659234]
The literature on behavior prediction spans various tasks, including action anticipation, activity forecasting, intent prediction, goal prediction, and so on.
Our survey aims to tie together this fragmented literature, covering recent technical innovations as well as the development of new large-scale datasets for model training and evaluation.
arXiv Detail & Related papers (2024-10-17T21:37:40Z) - Deep learning for precipitation nowcasting: A survey from the perspective of time series forecasting [4.5424061912112474]
This paper reviews recent progress in time series precipitation forecasting models using deep learning.
We categorize forecasting models into textitrecursive and textitmultiple strategies based on their approaches to predict future frames.
We evaluate current deep learning-based models for precipitation forecasting on a public benchmark, discuss their limitations and challenges, and present some promising research directions.
arXiv Detail & Related papers (2024-06-07T12:07:09Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
computational reinforcement learning seeks to construct an agent's perception of the world through predictions of future sensations.
An open challenge in this line of work is determining from the infinitely many predictions that the agent could possibly make which predictions might best support decision-making.
We introduce a meta-gradient descent process by which an agent learns what predictions to make, 2) the estimates for its chosen predictions, and 3) how to use those estimates to generate policies that maximize future reward.
arXiv Detail & Related papers (2022-06-13T21:31:06Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Long-Term Anticipation of Activities with Cycle Consistency [90.79357258104417]
We propose a framework for anticipating future activities directly from the features of the observed frames and train it in an end-to-end fashion.
Our framework achieves state-the-art results on two datasets: the Breakfast dataset and 50Salads.
arXiv Detail & Related papers (2020-09-02T15:41:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.