Minimizing Live Experiments in Recommender Systems: User Simulation to Evaluate Preference Elicitation Policies
- URL: http://arxiv.org/abs/2409.17436v1
- Date: Thu, 26 Sep 2024 00:08:46 GMT
- Title: Minimizing Live Experiments in Recommender Systems: User Simulation to Evaluate Preference Elicitation Policies
- Authors: Chih-Wei Hsu, Martin Mladenov, Ofer Meshi, James Pine, Hubert Pham, Shane Li, Xujian Liang, Anton Polishko, Li Yang, Ben Scheetz, Craig Boutilier,
- Abstract summary: We describe a simulation methodology used to augment (and reduce) the use of live experiments.
We illustrate its deployment for the evaluation of preference elicitation'' algorithms used to onboard new users of the YouTube Music platform.
- Score: 14.258382779305483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evaluation of policies in recommender systems typically involves A/B testing using live experiments on real users to assess a new policy's impact on relevant metrics. This ``gold standard'' comes at a high cost, however, in terms of cycle time, user cost, and potential user retention. In developing policies for ``onboarding'' new users, these costs can be especially problematic, since on-boarding occurs only once. In this work, we describe a simulation methodology used to augment (and reduce) the use of live experiments. We illustrate its deployment for the evaluation of ``preference elicitation'' algorithms used to onboard new users of the YouTube Music platform. By developing counterfactually robust user behavior models, and a simulation service that couples such models with production infrastructure, we are able to test new algorithms in a way that reliably predicts their performance on key metrics when deployed live. We describe our domain, our simulation models and platform, results of experiments and deployment, and suggest future steps needed to further realistic simulation as a powerful complement to live experiments.
Related papers
- Algorithmic Drift: A Simulation Framework to Study the Effects of Recommender Systems on User Preferences [7.552217586057245]
We propose a simulation framework that mimics user-recommender system interactions in a long-term scenario.
We introduce two novel metrics for quantifying the algorithm's impact on user preferences, specifically in terms of drift over time.
arXiv Detail & Related papers (2024-09-24T21:54:22Z) - Sim2Rec: A Simulator-based Decision-making Approach to Optimize
Real-World Long-term User Engagement in Sequential Recommender Systems [43.31078296862647]
Long-term user engagement (LTE) optimization in sequential recommender systems (SRS) is suited by reinforcement learning (RL)
RL has its shortcomings, particularly requiring a large number of online samples for exploration.
We present a simulator-based recommender policy training approach, Simulation-to-Recommendation (Sim2Rec)
arXiv Detail & Related papers (2023-05-03T19:21:25Z) - A Case Study on Designing Evaluations of ML Explanations with Simulated
User Studies [6.2511886555343805]
We conduct the first SimEvals on a real-world use case to evaluate whether explanations can better support ML-assisted decision-making in e-commerce fraud detection.
We find that SimEvals suggest that all considered explainers are equally performant, and none beat a baseline without explanations.
arXiv Detail & Related papers (2023-02-15T03:27:55Z) - Federated Privacy-preserving Collaborative Filtering for On-Device Next
App Prediction [52.16923290335873]
We propose a novel SeqMF model to solve the problem of predicting the next app launch during mobile device usage.
We modify the structure of the classical matrix factorization model and update the training procedure to sequential learning.
One more ingredient of the proposed approach is a new privacy mechanism that guarantees the protection of the sent data from the users to the remote server.
arXiv Detail & Related papers (2023-02-05T10:29:57Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
Sequential recommender models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform.
Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online.
Intent modeling is thus critical for understanding users and optimizing long-term user experience.
arXiv Detail & Related papers (2022-11-17T19:00:24Z) - Towards Data-Driven Offline Simulations for Online Reinforcement
Learning [30.654163861164864]
We formalize offline learner simulation (OLS) for reinforcement learning (RL)
We propose a novel evaluation protocol that measures both fidelity and efficiency of the simulation.
arXiv Detail & Related papers (2022-11-14T18:36:13Z) - Off-policy evaluation for learning-to-rank via interpolating the
item-position model and the position-based model [83.83064559894989]
A critical need for industrial recommender systems is the ability to evaluate recommendation policies offline, before deploying them to production.
We develop a new estimator that mitigates the problems of the two most popular off-policy estimators for rankings.
In particular, the new estimator, called INTERPOL, addresses the bias of a potentially misspecified position-based model.
arXiv Detail & Related papers (2022-10-15T17:22:30Z) - Synthetic Data-Based Simulators for Recommender Systems: A Survey [55.60116686945561]
This survey aims at providing a comprehensive overview of the recent trends in the field of modeling and simulation.
We start with the motivation behind the development of frameworks implementing the simulations -- simulators.
We provide a new consistent classification of existing simulators based on their functionality, approbation, and industrial effectiveness.
arXiv Detail & Related papers (2022-06-22T19:33:21Z) - Metaphorical User Simulators for Evaluating Task-oriented Dialogue
Systems [80.77917437785773]
Task-oriented dialogue systems ( TDSs) are assessed mainly in an offline setting or through human evaluation.
We propose a metaphorical user simulator for end-to-end TDS evaluation, where we define a simulator to be metaphorical if it simulates user's analogical thinking in interactions with systems.
We also propose a tester-based evaluation framework to generate variants, i.e., dialogue systems with different capabilities.
arXiv Detail & Related papers (2022-04-02T05:11:03Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
This paper proposes a set of benchmarks and a framework for the study of various algorithms aimed to transfer models and policies learnt in simulation to the real world.
We conduct experiments on a wide range of well known simulated environments to characterize and offer insights into the performance of different algorithms.
Our analysis can be useful for practitioners working in this area and can help make informed choices about the behavior and main properties of sim-to-real algorithms.
arXiv Detail & Related papers (2020-11-17T22:24:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.