論文の概要: Navigating the Shortcut Maze: A Comprehensive Analysis of Shortcut
Learning in Text Classification by Language Models
- arxiv url: http://arxiv.org/abs/2409.17455v1
- Date: Thu, 26 Sep 2024 01:17:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 23:40:01.065412
- Title: Navigating the Shortcut Maze: A Comprehensive Analysis of Shortcut
Learning in Text Classification by Language Models
- Title(参考訳): ショートカット迷路をナビゲートする:ショートカットの包括的分析
言語モデルによるテキスト分類の学習
- Authors: Yuqing Zhou, Ruixiang Tang, Ziyu Yao, Ziwei Zhu
- Abstract要約: この研究は、過度に単純化されたショートカットを超えてモデルの信頼性を損なう微妙で複雑なショートカットの影響を克服する。
ショートカットを発生、スタイル、概念に分類する包括的なベンチマークを導入する。
本研究は,洗練されたショートカットに対するモデルの弾力性と感受性を系統的に検討する。
- 参考スコア(独自算出の注目度): 20.70050968223901
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language models (LMs), despite their advances, often depend on spurious
correlations, undermining their accuracy and generalizability. This study
addresses the overlooked impact of subtler, more complex shortcuts that
compromise model reliability beyond oversimplified shortcuts. We introduce a
comprehensive benchmark that categorizes shortcuts into occurrence, style, and
concept, aiming to explore the nuanced ways in which these shortcuts influence
the performance of LMs. Through extensive experiments across traditional LMs,
large language models, and state-of-the-art robust models, our research
systematically investigates models' resilience and susceptibilities to
sophisticated shortcuts. Our benchmark and code can be found at:
https://github.com/yuqing-zhou/shortcut-learning-in-text-classification.
- Abstract(参考訳): 言語モデル(LM)は、その進歩にもかかわらず、しばしば素早い相関に依存し、その正確さと一般化性を損なう。
この研究は、過度に単純化されたショートカットを超えてモデルの信頼性を損なう微妙で複雑なショートカットの影響を克服する。
本稿では,ショートカットを発生,スタイル,概念に分類し,これらのショートカットがLMの性能に影響を及ぼす微妙な方法を探究する総合ベンチマークを提案する。
本研究は,従来のLM,大規模言語モデル,最先端のロバストモデルにまたがる広範な実験を通じて,洗練されたショートカットに対するモデルの弾力性と感受性を体系的に調査する。
ベンチマークとコードは、https://github.com/yuqing-zhou/shortcut-learning-in-text-classificationで確認できます。
関連論文リスト
- Shortcut Learning in In-Context Learning: A Survey [17.19214732926589]
ショートカット学習(英: Shortcut learning)とは、モデルが実践的なタスクにおいて、単純で非破壊的な決定ルールを採用する現象を指す。
In-Context Learning(ICL)におけるショートカット学習に関する関連研究をレビューするための新しい視点を提供する。
論文 参考訳(メタデータ) (2024-11-04T12:13:04Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVENは検索強化されたマスク付き言語モデリングとプレフィックス言語モデリングを組み合わせたモデルである。
フュージョン・イン・コンテキスト・ラーニング(Fusion-in-Context Learning)により、追加のトレーニングを必要とせずに、より多くのコンテキスト内サンプルを利用できる。
本研究は,テキスト内学習のためのエンコーダ・デコーダ言語モデルの構築の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-08-15T17:59:18Z) - Large Language Models Can be Lazy Learners: Analyze Shortcuts in
In-Context Learning [28.162661418161466]
大規模言語モデル(LLM)は、最近、コンテキスト内学習に大きな可能性を示している。
本稿では,ショートカットやプロンプト内のスプリアス相関に対するLDMsの依存度について検討する。
より大規模なモデルでは、推論中にプロンプトでショートカットを利用する可能性が高くなるという驚くべき発見が明らかになった。
論文 参考訳(メタデータ) (2023-05-26T20:56:30Z) - Shortcut Detection with Variational Autoencoders [1.3174512123890016]
可変オートエンコーダ(VAE)を利用した画像および音声データセットのショートカット検出手法を提案する。
VAEの潜在空間における特徴の分散により、データセット内の特徴目標相関を発見し、MLショートカットに対して半自動評価することが可能になる。
本手法の適用性を実世界のいくつかのデータセットに適用し,これまで発見されていないショートカットを同定する。
論文 参考訳(メタデータ) (2023-02-08T18:26:10Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z) - Shortcut Learning of Large Language Models in Natural Language
Understanding [119.45683008451698]
大規模言語モデル(LLM)は、一連の自然言語理解タスクにおいて最先端のパフォーマンスを達成した。
予測のショートカットとしてデータセットのバイアスやアーティファクトに依存するかも知れません。
これは、その一般化性と敵対的堅牢性に大きな影響を与えている。
論文 参考訳(メタデータ) (2022-08-25T03:51:39Z) - Few-shot Prompting Towards Controllable Response Generation [49.479958672988566]
まず,モデルのパラメータにアクセスすることなく,モデル生成に対するプロンプトと強化学習(RL)の組み合わせについて検討した。
マルチタスク学習を適用して、モデルが新しいタスクをより良く一般化できるようにします。
実験の結果,提案手法はパラメータにアクセスすることなく,複数のSOTA(State-of-the-art)対話モデルを制御することができることがわかった。
論文 参考訳(メタデータ) (2022-06-08T14:48:06Z) - Why Machine Reading Comprehension Models Learn Shortcuts? [56.629192589376046]
トレーニングデータにおけるショートカットの質問の大部分が、モデルが過度にショートカットのトリックに依存している、と私たちは主張する。
徹底的な実証分析により、MRCモデルは挑戦的な質問よりも早くショートカットの質問を学習する傾向が示されている。
論文 参考訳(メタデータ) (2021-06-02T08:43:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。