論文の概要: Adjusting Regression Models for Conditional Uncertainty Calibration
- arxiv url: http://arxiv.org/abs/2409.17466v1
- Date: Thu, 26 Sep 2024 01:55:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 23:28:14.096158
- Title: Adjusting Regression Models for Conditional Uncertainty Calibration
- Title(参考訳): 条件不確かさ校正のための回帰モデルの調整
- Authors: Ruijiang Gao, Mingzhang Yin, James McInerney, Nathan Kallus
- Abstract要約: 本稿では,分割共形予測手法を適用して条件付きカバレッジを改善するために,回帰関数を訓練する新しいアルゴリズムを提案する。
本研究では,条件付きカバレッジと名目付きカバレッジ率の差分を求める上限を確立し,この上限値を制御するためのエンドツーエンドアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 46.69079637538012
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Conformal Prediction methods have finite-sample distribution-free marginal
coverage guarantees. However, they generally do not offer conditional coverage
guarantees, which can be important for high-stakes decisions. In this paper, we
propose a novel algorithm to train a regression function to improve the
conditional coverage after applying the split conformal prediction procedure.
We establish an upper bound for the miscoverage gap between the conditional
coverage and the nominal coverage rate and propose an end-to-end algorithm to
control this upper bound. We demonstrate the efficacy of our method empirically
on synthetic and real-world datasets.
- Abstract(参考訳): 等角予測法は有限サンプル分布自由境界被覆保証を有する。
しかし、彼らは一般的に条件付きカバレッジ保証を提供していません。
本稿では,分割共形予測手法を適用した後,条件付きカバレッジを改善するために回帰関数を訓練する新しいアルゴリズムを提案する。
本研究では,条件付きカバレッジと名目付きカバレッジ率の差分を求める上限を確立し,この上限値を制御するためのエンドツーエンドアルゴリズムを提案する。
提案手法の有効性を実世界の合成・実世界のデータセットに実証的に示す。
関連論文リスト
- Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
実際のデータストリームは、分散シフトやフィードバックループ、敵アクターによって予測不可能に変化する可能性がある。
データがどのように進化するかに関わらず、有効な不確実性推定を保証するための予測フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-27T21:46:42Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Conformal Prediction with Learned Features [22.733758606168873]
本稿では,予測セットの条件付き妥当性を向上させるために,PLCP(Partition Learning Conformal Prediction)を提案する。
我々は,市販の機械学習モデルを用いて,勾配の交互化によるPLCPを効率的に実装する。
4つの実世界および合成データセットに対する実験結果から,PLCPの優れた性能を示した。
論文 参考訳(メタデータ) (2024-04-26T15:43:06Z) - Split Localized Conformal Prediction [20.44976410408424]
条件分布の局所近似を利用して修正された非整合性スコアを提案する。
修正されたスコアは分割共形法の精神を継承し、完全共形法と比較して単純かつ効率的である。
論文 参考訳(メタデータ) (2022-06-27T07:53:38Z) - Conformal Off-Policy Prediction in Contextual Bandits [54.67508891852636]
コンフォーマルなオフ政治予測は、新しい目標ポリシーの下で、結果に対する信頼できる予測間隔を出力することができる。
理論上の有限サンプル保証は、標準的な文脈的バンディットの設定を超える追加の仮定をすることなく提供する。
論文 参考訳(メタデータ) (2022-06-09T10:39:33Z) - Approximate Conditional Coverage via Neural Model Approximations [0.030458514384586396]
実験的に信頼性の高い近似条件付きカバレッジを得るためのデータ駆動手法を解析する。
我々は、限界範囲のカバレッジ保証を持つ分割型代替案で、実質的な(そして、そうでない)アンダーカバーの可能性を実証する。
論文 参考訳(メタデータ) (2022-05-28T02:59:05Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
経験的リスク最小化(Empirical Risk Minimization, ERM)は、機械学習のワークホースであるが、適応的に収集されたデータを使用すると、そのモデルに依存しない保証が失敗する可能性がある。
本研究では,仮説クラス上での損失関数の平均値を最小限に抑えるため,適応的に収集したデータを用いた一般的な重み付きERMアルゴリズムについて検討する。
政策学習では、探索がゼロになるたびに既存の文献のオープンギャップを埋める率-最適後悔保証を提供する。
論文 参考訳(メタデータ) (2021-06-03T09:50:13Z) - Privacy Preserving Recalibration under Domain Shift [119.21243107946555]
本稿では,差分プライバシー制約下での校正問題の性質を抽象化する枠組みを提案する。
また、新しいリカレーションアルゴリズム、精度温度スケーリングを設計し、プライベートデータセットの事前処理より優れています。
論文 参考訳(メタデータ) (2020-08-21T18:43:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。