Dataset Distillation-based Hybrid Federated Learning on Non-IID Data
- URL: http://arxiv.org/abs/2409.17517v2
- Date: Mon, 14 Jul 2025 00:42:10 GMT
- Title: Dataset Distillation-based Hybrid Federated Learning on Non-IID Data
- Authors: Xiufang Shi, Wei Zhang, Mincheng Wu, Guangyi Liu, Zhenyu Wen, Shibo He, Tejal Shah, Rajiv Ranjan,
- Abstract summary: We propose a hybrid federated learning framework called HFLDD, which integrates dataset distillation to generate independent and equally distributed (IID) data.<n>In particular, we partition the clients into heterogeneous clusters, where the data labels among different clients within a cluster are unbalanced.<n>This training process is like traditional federated learning on IID data, and hence effectively alleviates the impact of non-IID data on model training.
- Score: 18.226454363903446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of edge computing, Federated Learning (FL) has emerged as a promising solution for the intelligent Internet of Things (IoT). However, applying FL in mobile edge-cloud networks is greatly challenged by statistical heterogeneity and high communication overhead. To address it, we propose a hybrid federated learning framework called HFLDD, which integrates dataset distillation to generate approximately independent and equally distributed (IID) data, thereby improving the performance of model training. In particular, we partition the clients into heterogeneous clusters, where the data labels among different clients within a cluster are unbalanced while the data labels among different clusters are balanced. The cluster heads collect distilled data from the corresponding cluster members, and conduct model training in collaboration with the server. This training process is like traditional federated learning on IID data, and hence effectively alleviates the impact of non-IID data on model training. We perform a comprehensive analysis of the convergence behavior, communication overhead, and computational complexity of the proposed HFLDD. Extensive experimental results based on multiple public datasets demonstrate that when data labels are severely imbalanced, the proposed HFLDD outperforms the baseline methods in terms of both test accuracy and communication cost.
Related papers
- Dynamic Clustering for Personalized Federated Learning on Heterogeneous Edge Devices [10.51330114955586]
Federated Learning (FL) enables edge devices to collaboratively learn a global model.<n>We propose a dynamic clustering algorithm for personalized federated learning system (DC-PFL)<n>We show that DC-PFL significantly reduces total training time and improves model accuracy compared to baselines.
arXiv Detail & Related papers (2025-08-03T04:19:22Z) - Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout [62.73150122809138]
Federated Learning (FL) is a promising distributed machine learning approach that enables collaborative training of a global model using multiple edge devices.<n>We propose the FedDHAD FL framework, which comes with two novel methods: Dynamic Heterogeneous model aggregation (FedDH) and Adaptive Dropout (FedAD)<n>The combination of these two methods makes FedDHAD significantly outperform state-of-the-art solutions in terms of accuracy (up to 6.7% higher), efficiency (up to 2.02 times faster), and cost (up to 15.0% smaller)
arXiv Detail & Related papers (2025-07-14T16:19:00Z) - Data-Efficient Pretraining with Group-Level Data Influence Modeling [49.18903821780051]
Group-Level Data Influence Modeling (Group-MATES) is a novel data-efficient pretraining method.
Group-MATES collects oracle group-level influences by locally probing the pretraining model with data sets.
It then fine-tunes a relational data influence model to approximate oracles as relationship-weighted aggregations of individual influences.
arXiv Detail & Related papers (2025-02-20T16:34:46Z) - Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
Federated Learning (FL) emerged as a decentralized paradigm to train models while preserving privacy.
We propose a novel clustered FL method, FedGWC (Federated Gaussian Weighting Clustering), which groups clients based on their data distribution.
Our experiments on benchmark datasets show that FedGWC outperforms existing FL algorithms in cluster quality and classification accuracy.
arXiv Detail & Related papers (2025-02-05T16:33:36Z) - FedClust: Tackling Data Heterogeneity in Federated Learning through Weight-Driven Client Clustering [26.478852701376294]
Federated learning (FL) is an emerging distributed machine learning paradigm.
One of the major challenges in FL is the presence of uneven data distributions across client devices.
We propose em FedClust, a novel approach for CFL that leverages the correlation between local model weights and the data distribution of clients.
arXiv Detail & Related papers (2024-07-09T02:47:16Z) - Faster Convergence on Heterogeneous Federated Edge Learning: An Adaptive Clustered Data Sharing Approach [27.86468387141422]
Federated Edge Learning (FEEL) emerges as a pioneering distributed machine learning paradigm for the 6G Hyper-Connectivity.<n>Current FEEL algorithms struggle with non-independent and non-identically distributed (non-IID) data, leading to elevated communication costs and compromised model accuracy.<n>We introduce a clustered data sharing framework, mitigating data heterogeneity by selectively sharing partial data from cluster heads to trusted associates.<n>Experiments show that the proposed framework facilitates FEEL on non-IID datasets with faster convergence rate and higher model accuracy in a limited communication environment.
arXiv Detail & Related papers (2024-06-14T07:22:39Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - FLASH: Federated Learning Across Simultaneous Heterogeneities [54.80435317208111]
FLASH(Federated Learning Across Simultaneous Heterogeneities) is a lightweight and flexible client selection algorithm.
It outperforms state-of-the-art FL frameworks under extensive sources of Heterogeneities.
It achieves substantial and consistent improvements over state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-13T20:04:39Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
We propose federated learning with consensus-oriented generation (FedCOG)
FedCOG consists of two key components at the client side: complementary data generation and knowledge-distillation-based model training.
Experiments on classical and real-world FL datasets show that FedCOG consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-10T18:49:59Z) - Stochastic Clustered Federated Learning [21.811496586350653]
This paper proposes StoCFL, a novel clustered federated learning approach for generic Non-IID issues.
In detail, StoCFL implements a flexible CFL framework that supports an arbitrary proportion of client participation and newly joined clients.
The results show that StoCFL could obtain promising cluster results even when the number of clusters is unknown.
arXiv Detail & Related papers (2023-03-02T01:39:16Z) - CADIS: Handling Cluster-skewed Non-IID Data in Federated Learning with
Clustered Aggregation and Knowledge DIStilled Regularization [3.3711670942444014]
Federated learning enables edge devices to train a global model collaboratively without exposing their data.
We tackle a new type of Non-IID data, called cluster-skewed non-IID, discovered in actual data sets.
We propose an aggregation scheme that guarantees equality between clusters.
arXiv Detail & Related papers (2023-02-21T02:53:37Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
We show that not only the issue of data heterogeneity in current setups is not necessarily a problem but also in fact it can be beneficial for the FL participants.
Our observations are intuitive.
Our code is available at https://github.com/MMorafah/FL-SC-NIID.
arXiv Detail & Related papers (2022-09-30T17:15:19Z) - FedDRL: Deep Reinforcement Learning-based Adaptive Aggregation for
Non-IID Data in Federated Learning [4.02923738318937]
Uneven distribution of local data across different edge devices (clients) results in slow model training and accuracy reduction in federated learning.
This work introduces a novel non-IID type encountered in real-world datasets, namely cluster-skew.
We propose FedDRL, a novel FL model that employs deep reinforcement learning to adaptively determine each client's impact factor.
arXiv Detail & Related papers (2022-08-04T04:24:16Z) - FEDIC: Federated Learning on Non-IID and Long-Tailed Data via Calibrated
Distillation [54.2658887073461]
Dealing with non-IID data is one of the most challenging problems for federated learning.
This paper studies the joint problem of non-IID and long-tailed data in federated learning and proposes a corresponding solution called Federated Ensemble Distillation with Imbalance (FEDIC)
FEDIC uses model ensemble to take advantage of the diversity of models trained on non-IID data.
arXiv Detail & Related papers (2022-04-30T06:17:36Z) - Heterogeneous Federated Learning via Grouped Sequential-to-Parallel
Training [60.892342868936865]
Federated learning (FL) is a rapidly growing privacy-preserving collaborative machine learning paradigm.
We propose a data heterogeneous-robust FL approach, FedGSP, to address this challenge.
We show that FedGSP improves the accuracy by 3.7% on average compared with seven state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-31T03:15:28Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.