Dynamic Clustering for Personalized Federated Learning on Heterogeneous Edge Devices
- URL: http://arxiv.org/abs/2508.01580v1
- Date: Sun, 03 Aug 2025 04:19:22 GMT
- Title: Dynamic Clustering for Personalized Federated Learning on Heterogeneous Edge Devices
- Authors: Heting Liu, Junzhe Huang, Fang He, Guohong Cao,
- Abstract summary: Federated Learning (FL) enables edge devices to collaboratively learn a global model.<n>We propose a dynamic clustering algorithm for personalized federated learning system (DC-PFL)<n>We show that DC-PFL significantly reduces total training time and improves model accuracy compared to baselines.
- Score: 10.51330114955586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) enables edge devices to collaboratively learn a global model, but it may not perform well when clients have high data heterogeneity. In this paper, we propose a dynamic clustering algorithm for personalized federated learning system (DC-PFL) to address the problem of data heterogeneity. DC-PFL starts with all clients training a global model and gradually groups the clients into smaller clusters for model personalization based on their data similarities. To address the challenge of estimating data heterogeneity without exposing raw data, we introduce a discrepancy metric called model discrepancy, which approximates data heterogeneity solely based on the model weights received by the server. We demonstrate that model discrepancy is strongly and positively correlated with data heterogeneity and can serve as a reliable indicator of data heterogeneity. To determine when and how to change grouping structures, we propose an algorithm based on the rapid decrease period of the training loss curve. Moreover, we propose a layer-wise aggregation mechanism that aggregates the low-discrepancy layers at a lower frequency to reduce the amount of transmitted data and communication costs. We conduct extensive experiments on various datasets to evaluate our proposed algorithm, and our results show that DC-PFL significantly reduces total training time and improves model accuracy compared to baselines.
Related papers
- Enhancing Federated Learning Through Secure Cluster-Weighted Client Aggregation [4.869042695112397]
Federated learning (FL) has emerged as a promising paradigm in machine learning.<n>In FL, a global model is trained iteratively on local datasets residing on individual devices.<n>This paper introduces a novel FL framework, ClusterGuardFL, that employs dissimilarity scores, k-means clustering, and reconciliation confidence scores to dynamically assign weights to client updates.
arXiv Detail & Related papers (2025-03-29T04:29:24Z) - FedAWA: Adaptive Optimization of Aggregation Weights in Federated Learning Using Client Vectors [50.131271229165165]
Federated Learning (FL) has emerged as a promising framework for distributed machine learning.<n>Data heterogeneity resulting from differences across user behaviors, preferences, and device characteristics poses a significant challenge for federated learning.<n>We propose Adaptive Weight Aggregation (FedAWA), a novel method that adaptively adjusts aggregation weights based on client vectors during the learning process.
arXiv Detail & Related papers (2025-03-20T04:49:40Z) - Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
Federated Learning (FL) emerged as a decentralized paradigm to train models while preserving privacy.<n>We propose a novel clustered FL method, FedGWC (Federated Gaussian Weighting Clustering), which groups clients based on their data distribution.<n>Our experiments on benchmark datasets show that FedGWC outperforms existing FL algorithms in cluster quality and classification accuracy.
arXiv Detail & Related papers (2025-02-05T16:33:36Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
We propose federated learning with consensus-oriented generation (FedCOG)
FedCOG consists of two key components at the client side: complementary data generation and knowledge-distillation-based model training.
Experiments on classical and real-world FL datasets show that FedCOG consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-10T18:49:59Z) - Contrastive encoder pre-training-based clustered federated learning for
heterogeneous data [17.580390632874046]
Federated learning (FL) enables distributed clients to collaboratively train a global model while preserving their data privacy.
We propose contrastive pre-training-based clustered federated learning (CP-CFL) to improve the model convergence and overall performance of FL systems.
arXiv Detail & Related papers (2023-11-28T05:44:26Z) - Leveraging Foundation Models to Improve Lightweight Clients in Federated
Learning [16.684749528240587]
Federated Learning (FL) is a distributed training paradigm that enables clients scattered across the world to cooperatively learn a global model without divulging confidential data.
FL faces a significant challenge in the form of heterogeneous data distributions among clients, which leads to a reduction in performance and robustness.
We introduce foundation model distillation to assist in the federated training of lightweight client models and increase their performance under heterogeneous data settings while keeping inference costs low.
arXiv Detail & Related papers (2023-11-14T19:10:56Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
Federated learning aims to train models across different clients without the sharing of data for privacy considerations.
We study how data heterogeneity affects the representations of the globally aggregated models.
We propose sc FedDecorr, a novel method that can effectively mitigate dimensional collapse in federated learning.
arXiv Detail & Related papers (2022-10-01T09:04:17Z) - Gradient Masked Averaging for Federated Learning [24.687254139644736]
Federated learning allows a large number of clients with heterogeneous data to coordinate learning of a unified global model.
Standard FL algorithms involve averaging of model parameters or gradient updates to approximate the global model at the server.
We propose a gradient masked averaging approach for FL as an alternative to the standard averaging of client updates.
arXiv Detail & Related papers (2022-01-28T08:42:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.