Preserving phase coherence and linearity in cat qubits with exponential bit-flip suppression
- URL: http://arxiv.org/abs/2409.17556v1
- Date: Thu, 26 Sep 2024 05:57:51 GMT
- Title: Preserving phase coherence and linearity in cat qubits with exponential bit-flip suppression
- Authors: Harald Putterman, Kyungjoo Noh, Rishi N. Patel, Gregory A. Peairs, Gregory S. MacCabe, Menyoung Lee, Shahriar Aghaeimeibodi, Connor T. Hann, Ignace Jarrige, Guillaume Marcaud, Yuan He, Hesam Moradinejad, John Clai Owens, Thomas Scaffidi, Patricio Arrangoiz-Arriola, Joe Iverson, Harry Levine, Fernando G. S. L. Brandão, Matthew H. Matheny, Oskar Painter,
- Abstract summary: Cat qubits can exhibit an exponential noise bias against bit-flip errors with increasing mean photon number.
We show how to overcome this challenge by coloring the loss environment of the buffer mode with a multi-pole filter.
We achieve near-ideal enhancement of cat-qubit bit-flip times with increasing photon number.
- Score: 29.57902297308655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cat qubits, a type of bosonic qubit encoded in a harmonic oscillator, can exhibit an exponential noise bias against bit-flip errors with increasing mean photon number. Here, we focus on cat qubits stabilized by two-photon dissipation, where pairs of photons are added and removed from a harmonic oscillator by an auxiliary, lossy buffer mode. This process requires a large loss rate and strong nonlinearities of the buffer mode that must not degrade the coherence and linearity of the oscillator. In this work, we show how to overcome this challenge by coloring the loss environment of the buffer mode with a multi-pole filter and optimizing the circuit to take into account additional inductances in the buffer mode. Using these techniques, we achieve near-ideal enhancement of cat-qubit bit-flip times with increasing photon number, reaching over $0.1$ seconds with a mean photon number of only $4$. Concurrently, our cat qubit remains highly phase coherent, with phase-flip times corresponding to an effective lifetime of $T_{1,\text{eff}} \simeq 70$ $\mu$s, comparable with the bare oscillator lifetime. We achieve this performance even in the presence of an ancilla transmon, used for reading out the cat qubit states, by engineering a tunable oscillator-ancilla dispersive coupling. Furthermore, the low nonlinearity of the harmonic oscillator mode allows us to perform pulsed cat-qubit stabilization, an important control primitive, where the stabilization can remain off for a significant fraction (e.g., two thirds) of a $3~\mathrm{\mu s}$ cycle without degrading bit-flip times. These advances are important for the realization of scalable error-correction with cat qubits, where large noise bias and low phase-flip error rate enable the use of hardware-efficient outer error-correcting codes.
Related papers
- A cat qubit stabilization scheme using a voltage biased Josephson junction [0.0]
A two-to-one photon interaction can stabilize cat qubits, where bit-flip errors are exponentially suppressed.
This work investigates how the DC bias approach to Hamiltonian engineering can benefit cat qubits.
arXiv Detail & Related papers (2024-11-12T19:17:35Z) - High-Coherence Kerr-cat qubit in 2D architecture [1.5626229757473267]
Kerr-cat qubit is a bosonic qubit in which multi-photon Schrodinger cat states are stabilized.
This qubit is a promising candidate to implement quantum error correction codes tailored for noise-biased qubits.
arXiv Detail & Related papers (2024-04-25T15:59:01Z) - Autoparametric resonance extending the bit-flip time of a cat qubit up to 0.3 s [0.0]
Cat qubits offer a promising route towards quantum error correction.
We use dissipation to our advantage so that photon pairs of the harmonic mode are exchanged with single photons of its environment.
We show that bit-flip errors of the auto cat qubit are prevented for a characteristic time up to 0.3s with only a mild impact on phaseflip errors.
arXiv Detail & Related papers (2023-07-13T14:01:32Z) - Qubit readouts enabled by qubit cloaking [49.1574468325115]
Time-dependent drives play a crucial role in quantum computing efforts.
They enable single-qubit control, entangling logical operations, as well as qubit readout.
Qubit cloaking was introduced in Lled'o, Dassonneville, et al.
arXiv Detail & Related papers (2023-05-01T15:58:25Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - High-performance repetition cat code using fast noisy operations [0.0]
Cat qubits stabilized by two-photon driven dissipation benefit from exponential suppression of bit-flip errors and an extensive set of gates preserving this protection.
We propose a performance optimization of the repetition cat code architecture using fast but noisy CNOT gates for stabilizer measurements.
arXiv Detail & Related papers (2022-12-22T18:03:37Z) - Quantum error correction with dissipatively stabilized squeezed cat
qubits [68.8204255655161]
We propose and analyze the error correction performance of a dissipatively stabilized squeezed cat qubit.
We find that for moderate squeezing the bit-flip error rate gets significantly reduced in comparison with the ordinary cat qubit while leaving the phase flip rate unchanged.
arXiv Detail & Related papers (2022-10-24T16:02:20Z) - Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits [105.54048699217668]
amplitude damping time, $T_phi$, has long stood as the major factor limiting quantum fidelity in superconducting circuits.
We propose a scheme for overcoming the conventional $T_phi$ limit on fidelity by designing qubits in a way that amplitude damping errors can be detected and converted into erasure errors.
arXiv Detail & Related papers (2022-08-10T17:39:21Z) - A critical Schr\"odinger cat qubit [0.0]
In cat qubits, an engineered dissipation scheme combining two-photon drive and loss has been used to stabilize this manifold.
In Kerr cat qubits, where highly-performing gates can be engineered, two-photon drive and Kerr nonlinearity cooperate to confine the system.
We show that large detunings and small, but non-negligible, two-photon loss rates are fundamental to achieve optimal performance.
arXiv Detail & Related papers (2022-08-09T17:44:00Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Stabilization of Qubit Relaxation Rates by Frequency Modulation [68.8204255655161]
Temporal, spectral, and sample-to-sample fluctuations in coherence properties of qubits form an outstanding challenge for the development of upscaled fault-tolerant quantum computers.
A ubiquitous source for these fluctuations in superconducting qubits is a set of atomic-scale defects with a two-level structure.
We show that frequency modulation of a qubit or, alternatively, of the two-level defects, leads to averaging of the qubit relaxation rate over a wide interval of frequencies.
arXiv Detail & Related papers (2021-04-08T11:32:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.