Benign or Not-Benign Overfitting in Token Selection of Attention Mechanism
- URL: http://arxiv.org/abs/2409.17625v1
- Date: Thu, 26 Sep 2024 08:20:05 GMT
- Title: Benign or Not-Benign Overfitting in Token Selection of Attention Mechanism
- Authors: Keitaro Sakamoto, Issei Sato,
- Abstract summary: We analyze benign overfitting in the token selection mechanism of the attention architecture.
To the best of our knowledge, this is the first study to characterize benign overfitting for the attention mechanism.
- Score: 34.316270145027616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern over-parameterized neural networks can be trained to fit the training data perfectly while still maintaining a high generalization performance. This "benign overfitting" phenomenon has been studied in a surge of recent theoretical work; however, most of these studies have been limited to linear models or two-layer neural networks. In this work, we analyze benign overfitting in the token selection mechanism of the attention architecture, which characterizes the success of transformer models. We first show the existence of a benign overfitting solution and explain its mechanism in the attention architecture. Next, we discuss whether the model converges to such a solution, raising the difficulties specific to the attention architecture. We then present benign overfitting cases and not-benign overfitting cases by conditioning different scenarios based on the behavior of attention probabilities during training. To the best of our knowledge, this is the first study to characterize benign overfitting for the attention mechanism.
Related papers
- On the Emergence of Position Bias in Transformers [59.87743433861665]
This paper introduces a novel graph-theoretic framework to analyze position bias in multi-layer attention.
We quantify how tokens interact with contextual information based on their sequential positions.
Our framework offers a principled foundation for understanding positional biases in transformers.
arXiv Detail & Related papers (2025-02-04T02:53:07Z) - Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network.
Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena.
arXiv Detail & Related papers (2024-10-31T22:54:34Z) - Active-Dormant Attention Heads: Mechanistically Demystifying Extreme-Token Phenomena in LLMs [77.66717051042032]
Practitioners have consistently observed three puzzling phenomena in transformer-based large language models.
These phenomena are characterized by certain so-called "sink tokens" receiving disproportionately high attention weights.
We elucidate the mechanisms behind extreme-token phenomena.
arXiv Detail & Related papers (2024-10-17T17:54:06Z) - CAFO: Feature-Centric Explanation on Time Series Classification [6.079474513317929]
Current explanation methods for MTS mostly focus on time-centric explanations, apt for pinpointing important time periods but less effective in identifying key features.
Our study introduces a novel feature-centric explanation and evaluation framework for MTS, named CAFO.
Our framework's efficacy is validated through extensive empirical analyses on two major public benchmarks and real-world datasets.
arXiv Detail & Related papers (2024-06-03T23:06:45Z) - A phase transition between positional and semantic learning in a solvable model of dot-product attention [30.96921029675713]
Morelinear model dot-product attention is studied as a non-dimensional self-attention layer with trainable and low-dimensional query and key data.
We show that either a positional attention mechanism (with tokens each other based on their respective positions) or a semantic attention mechanism (with tokens tied to each other based their meaning) or a transition from the former to the latter with increasing sample complexity.
arXiv Detail & Related papers (2024-02-06T11:13:54Z) - Naturalness of Attention: Revisiting Attention in Code Language Models [3.756550107432323]
Language models for code such as CodeBERT offer the capability to learn advanced source code representation, but their opacity poses barriers to understanding of captured properties.
This study aims to shed some light on the previously ignored factors of the attention mechanism beyond the attention weights.
arXiv Detail & Related papers (2023-11-22T16:34:12Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
adversarial examples can manipulate machine learning models into making erroneous predictions.
The transferability of adversarial examples enables black-box attacks which circumvent the need for detailed knowledge of the target model.
This survey explores the landscape of the adversarial transferability of adversarial examples.
arXiv Detail & Related papers (2023-10-26T17:45:26Z) - Unraveling Feature Extraction Mechanisms in Neural Networks [10.13842157577026]
We propose a theoretical approach based on Neural Tangent Kernels (NTKs) to investigate such mechanisms.
We reveal how these models leverage statistical features during gradient descent and how they are integrated into final decisions.
We find that while self-attention and CNN models may exhibit limitations in learning n-grams, multiplication-based models seem to excel in this area.
arXiv Detail & Related papers (2023-10-25T04:22:40Z) - A Theoretical Understanding of Shallow Vision Transformers: Learning,
Generalization, and Sample Complexity [71.11795737362459]
ViTs with self-attention modules have recently achieved great empirical success in many tasks.
However, theoretical learning generalization analysis is mostly noisy and elusive.
This paper provides the first theoretical analysis of a shallow ViT for a classification task.
arXiv Detail & Related papers (2023-02-12T22:12:35Z) - Robust Graph Representation Learning via Predictive Coding [46.22695915912123]
Predictive coding is a message-passing framework initially developed to model information processing in the brain.
In this work, we build models that rely on the message-passing rule of predictive coding.
We show that the proposed models are comparable to standard ones in terms of performance in both inductive and transductive tasks.
arXiv Detail & Related papers (2022-12-09T03:58:22Z) - Attention mechanisms for physiological signal deep learning: which
attention should we take? [0.0]
We experimentally analyze four attention mechanisms (e.g., squeeze-and-excitation, non-local, convolutional block attention module, and multi-head self-attention) and three convolutional neural network (CNN) architectures.
We evaluate multiple combinations for performance and convergence of physiological signal deep learning model.
arXiv Detail & Related papers (2022-07-04T07:24:08Z) - Guiding Visual Question Answering with Attention Priors [76.21671164766073]
We propose to guide the attention mechanism using explicit linguistic-visual grounding.
This grounding is derived by connecting structured linguistic concepts in the query to their referents among the visual objects.
The resultant algorithm is capable of probing attention-based reasoning models, injecting relevant associative knowledge, and regulating the core reasoning process.
arXiv Detail & Related papers (2022-05-25T09:53:47Z) - Benign Overfitting in Two-layer Convolutional Neural Networks [90.75603889605043]
We study the benign overfitting phenomenon in training a two-layer convolutional neural network (CNN)
We show that when the signal-to-noise ratio satisfies a certain condition, a two-layer CNN trained by gradient descent can achieve arbitrarily small training and test loss.
On the other hand, when this condition does not hold, overfitting becomes harmful and the obtained CNN can only achieve constant level test loss.
arXiv Detail & Related papers (2022-02-14T07:45:51Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - SparseBERT: Rethinking the Importance Analysis in Self-attention [107.68072039537311]
Transformer-based models are popular for natural language processing (NLP) tasks due to its powerful capacity.
Attention map visualization of a pre-trained model is one direct method for understanding self-attention mechanism.
We propose a Differentiable Attention Mask (DAM) algorithm, which can be also applied in guidance of SparseBERT design.
arXiv Detail & Related papers (2021-02-25T14:13:44Z) - On the Dynamics of Training Attention Models [30.85940880569692]
We study the dynamics of training a simple attention-based classification model using gradient descent.
We prove that training must converge to attending to the discriminative words when the attention output is classified by a linear classifier.
arXiv Detail & Related papers (2020-11-19T18:55:30Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
Gradient Starvation arises when cross-entropy loss is minimized by capturing only a subset of features relevant for the task.
This work provides a theoretical explanation for the emergence of such feature imbalance in neural networks.
arXiv Detail & Related papers (2020-11-18T18:52:08Z) - Attention or memory? Neurointerpretable agents in space and time [0.0]
We design a model incorporating a self-attention mechanism that implements task-state representations in semantic feature-space.
To evaluate the agent's selective properties, we add a large volume of task-irrelevant features to observations.
In line with neuroscience predictions, self-attention leads to increased robustness to noise compared to benchmark models.
arXiv Detail & Related papers (2020-07-09T15:04:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.