Hand-object reconstruction via interaction-aware graph attention mechanism
- URL: http://arxiv.org/abs/2409.17629v1
- Date: Thu, 26 Sep 2024 08:23:04 GMT
- Title: Hand-object reconstruction via interaction-aware graph attention mechanism
- Authors: Taeyun Woo, Tae-Kyun Kim, Jinah Park,
- Abstract summary: Estimating the poses of both a hand and an object has become an important area of research.
We propose a graph-based refinement method that incorporates an interaction-aware graph-attention mechanism.
Experiments demonstrate the effectiveness of our proposed method with notable improvements in the realm of physical plausibility.
- Score: 25.396356108313178
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Estimating the poses of both a hand and an object has become an important area of research due to the growing need for advanced vision computing. The primary challenge involves understanding and reconstructing how hands and objects interact, such as contact and physical plausibility. Existing approaches often adopt a graph neural network to incorporate spatial information of hand and object meshes. However, these approaches have not fully exploited the potential of graphs without modification of edges within and between hand- and object-graphs. We propose a graph-based refinement method that incorporates an interaction-aware graph-attention mechanism to account for hand-object interactions. Using edges, we establish connections among closely correlated nodes, both within individual graphs and across different graphs. Experiments demonstrate the effectiveness of our proposed method with notable improvements in the realm of physical plausibility.
Related papers
- Geometric Graph Neural Network Modeling of Human Interactions in Crowded Environments [3.7752830020595787]
This paper proposes a geometric graph neural network architecture that integrates domain knowledge from psychological studies to model pedestrian interactions and predict future trajectories.
Evaluations across multiple datasets demonstrate improved prediction accuracy through reduced average and final displacement error metrics.
arXiv Detail & Related papers (2024-10-22T20:33:10Z) - Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
We propose a visual-geometric collaborative guided affordance learning network that incorporates visual and geometric cues.
Our method outperforms the representative models regarding objective metrics and visual quality.
arXiv Detail & Related papers (2024-10-15T07:35:51Z) - 3D WholeBody Pose Estimation based on Semantic Graph Attention Network and Distance Information [2.457872341625575]
A novel Semantic Graph Attention Network can benefit from the ability of self-attention to capture global context.
A Body Part Decoder assists in extracting and refining the information related to specific segments of the body.
A Geometry Loss makes a critical constraint on the structural skeleton of the body, ensuring that the model's predictions adhere to the natural limits of human posture.
arXiv Detail & Related papers (2024-06-03T10:59:00Z) - Novel-view Synthesis and Pose Estimation for Hand-Object Interaction
from Sparse Views [41.50710846018882]
We propose a neural rendering and pose estimation system for hand-object interaction from sparse views.
We first learn the shape and appearance prior knowledge of hands and objects separately with the neural representation.
During the online stage, we design a rendering-based joint model fitting framework to understand the dynamic hand-object interaction.
arXiv Detail & Related papers (2023-08-22T05:17:41Z) - Interacting Hand-Object Pose Estimation via Dense Mutual Attention [97.26400229871888]
3D hand-object pose estimation is the key to the success of many computer vision applications.
We propose a novel dense mutual attention mechanism that is able to model fine-grained dependencies between the hand and the object.
Our method is able to produce physically plausible poses with high quality and real-time inference speed.
arXiv Detail & Related papers (2022-11-16T10:01:33Z) - Causally-guided Regularization of Graph Attention Improves
Generalizability [69.09877209676266]
We introduce CAR, a general-purpose regularization framework for graph attention networks.
Methodname aligns the attention mechanism with the causal effects of active interventions on graph connectivity.
For social media network-sized graphs, a CAR-guided graph rewiring approach could allow us to combine the scalability of graph convolutional methods with the higher performance of graph attention.
arXiv Detail & Related papers (2022-10-20T01:29:10Z) - IGFormer: Interaction Graph Transformer for Skeleton-based Human
Interaction Recognition [26.05948629634753]
We propose a novel Interaction Graph Transformer (IGFormer) network for skeleton-based interaction recognition.
IGFormer constructs interaction graphs according to the semantic and distance correlations between the interactive body parts.
We also propose a Semantic Partition Module to transform each human skeleton sequence into a Body-Part-Time sequence.
arXiv Detail & Related papers (2022-07-25T12:11:15Z) - Collaborative Learning for Hand and Object Reconstruction with
Attention-guided Graph Convolution [49.10497573378427]
Estimating the pose and shape of hands and objects under interaction finds numerous applications including augmented and virtual reality.
Our algorithm is optimisation to object models, and it learns the physical rules governing hand-object interaction.
Experiments using four widely-used benchmarks show that our framework achieves beyond state-of-the-art accuracy in 3D pose estimation, as well as recovers dense 3D hand and object shapes.
arXiv Detail & Related papers (2022-04-27T17:00:54Z) - GraphOpt: Learning Optimization Models of Graph Formation [72.75384705298303]
We propose an end-to-end framework that learns an implicit model of graph structure formation and discovers an underlying optimization mechanism.
The learned objective can serve as an explanation for the observed graph properties, thereby lending itself to transfer across different graphs within a domain.
GraphOpt poses link formation in graphs as a sequential decision-making process and solves it using maximum entropy inverse reinforcement learning algorithm.
arXiv Detail & Related papers (2020-07-07T16:51:39Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.