論文の概要: Computation Pre-Offloading for MEC-Enabled Vehicular Networks via Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2409.17681v1
- Date: Thu, 26 Sep 2024 09:46:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 20:46:02.668900
- Title: Computation Pre-Offloading for MEC-Enabled Vehicular Networks via Trajectory Prediction
- Title(参考訳): 軌道予測によるMEC対応車体ネットワークの計算前負荷
- Authors: Ting Zhang, Bo Yang, Zhiwen Yu, Xuelin Cao, George C. Alexandropoulos, Yan Zhang, Chau Yuen,
- Abstract要約: 本稿では,車両の過去の軌跡を解析するためのトラジェクトリ予測に基づく事前負荷決定アルゴリズムを提案する。
本稿では,Double Deep Q-Network (DDQN) を用いて,エッジサーバがタスク処理遅延を最小限に抑える動的リソース割り当てアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 38.493882483362135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Task offloading is of paramount importance to efficiently orchestrate vehicular wireless networks, necessitating the availability of information regarding the current network status and computational resources. However, due to the mobility of the vehicles and the limited computational resources for performing task offloading in near-real-time, such schemes may require high latency, thus, become even infeasible. To address this issue, in this paper, we present a Trajectory Prediction-based Pre-offloading Decision (TPPD) algorithm for analyzing the historical trajectories of vehicles to predict their future coordinates, thereby allowing for computational resource allocation in advance. We first utilize the Long Short-Term Memory (LSTM) network model to predict each vehicle's movement trajectory. Then, based on the task requirements and the predicted trajectories, we devise a dynamic resource allocation algorithm using a Double Deep Q-Network (DDQN) that enables the edge server to minimize task processing delay, while ensuring effective utilization of the available computational resources. Our simulation results verify the effectiveness of the proposed approach, showcasing that, as compared with traditional real-time task offloading strategies, the proposed TPPD algorithm significantly reduces task processing delay while improving resource utilization.
- Abstract(参考訳): タスクオフロードは、車載無線ネットワークを効率的にオーケストレーションする上で最重要であり、現在のネットワーク状況や計算資源に関する情報の入手が必要である。
しかし、車両の移動性やタスクオフロードをほぼリアルタイムで行うための限られた計算資源のため、そのようなスキームは高いレイテンシを必要とするため、さらに実現不可能となる。
そこで本論文では,車両の過去の軌跡を解析して将来の座標を予測し,あらかじめ計算資源を割り当てることのできるトラジェクトリ予測に基づく事前負荷決定(TPPD)アルゴリズムを提案する。
まず,Long Short-Term Memory (LSTM) ネットワークモデルを用いて各車両の運動軌跡を予測する。
そこで,タスク要求と予測軌跡に基づいてDouble Deep Q-Network (DDQN) を用いた動的リソース割当アルゴリズムを考案した。
シミュレーションの結果,提案手法の有効性を検証し,従来のリアルタイムタスクオフロード方式と比較して,TPPDアルゴリズムは資源利用の向上とともにタスク処理の遅延を大幅に低減することを示した。
関連論文リスト
- DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Structural Knowledge-Driven Meta-Learning for Task Offloading in
Vehicular Networks with Integrated Communications, Sensing and Computing [21.50450449083369]
タスクオフロードは、オンボードコンピューティングリソースが限られているため、遅延に敏感な車両用アプリケーションの厳格な要件を満たすための潜在的なソリューションである。
本稿では,モデルに基づくAMアルゴリズムとニューラルネットワークを併用した,創造的構造的知識駆動型メタラーニング(SKDML)手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T03:31:59Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
我々は,長期的エネルギー制約のある分散エッジデバイスにおいて,トレーニングデータを時間とともにランダムに生成するフェデレーションエッジ学習(FEEL)システムを検討する。
限られた通信リソースとレイテンシ要件のため、各イテレーションでローカルトレーニングプロセスに参加するのはデバイスのサブセットのみである。
論文 参考訳(メタデータ) (2023-05-02T07:41:16Z) - Accuracy-Guaranteed Collaborative DNN Inference in Industrial IoT via
Deep Reinforcement Learning [10.223526707269537]
計算集約型ディープニューラルネットワーク(DNN)推論サービスをサポートするためには,IoT(Industrial Internet of Things)デバイスとエッジネットワークのコラボレーションが不可欠だ。
本稿では,産業用IoTネットワークにおける協調推論問題について検討する。
論文 参考訳(メタデータ) (2022-12-31T05:53:17Z) - Computation Offloading and Resource Allocation in F-RANs: A Federated
Deep Reinforcement Learning Approach [67.06539298956854]
フォグ無線アクセスネットワーク(フォグ無線アクセスネットワーク、F-RAN)は、ユーザのモバイルデバイス(MD)が計算タスクを近くのフォグアクセスポイント(F-AP)にオフロードできる有望な技術である。
論文 参考訳(メタデータ) (2022-06-13T02:19:20Z) - Revenue and Energy Efficiency-Driven Delay Constrained Computing Task
Offloading and Resource Allocation in a Vehicular Edge Computing Network: A
Deep Reinforcement Learning Approach [13.400466824558915]
作業遅延制約に対するタスクタイプと車両速度の併用効果は研究されていない。
本稿では,共同作業型と車速対応タスクオフロードと資源配分戦略を提案する。
本アルゴリズムは,タスク完了遅延,車両のエネルギーコスト,処理収益において優れた性能を実現することができる。
論文 参考訳(メタデータ) (2020-10-16T02:45:05Z) - Deep Reinforcement Learning for Delay-Oriented IoT Task Scheduling in
Space-Air-Ground Integrated Network [24.022108191145527]
宇宙空間統合ネットワーク(SAGIN)における遅延指向モノのインターネット(IoT)サービスにおけるタスクスケジューリング問題について検討する。
検討されたシナリオでは、無人航空機(UAV)がIoTデバイスからコンピューティングタスクを収集し、オンラインのオフロード決定を行う。
我々の目的は、UAVエネルギー容量の制約により、タスクのオフロードと計算遅延を最小限に抑えるタスクスケジューリングポリシーを設計することである。
論文 参考訳(メタデータ) (2020-10-04T02:58:03Z) - A Machine Learning Approach for Task and Resource Allocation in Mobile
Edge Computing Based Networks [108.57859531628264]
無線ネットワークにおいて,共同作業,スペクトル,送信電力配分問題について検討する。
提案アルゴリズムは、標準Q-ラーニングアルゴリズムと比較して、収束に必要なイテレーション数と全ユーザの最大遅延を最大18%、11.1%削減することができる。
論文 参考訳(メタデータ) (2020-07-20T13:46:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。