Computation Pre-Offloading for MEC-Enabled Vehicular Networks via Trajectory Prediction
- URL: http://arxiv.org/abs/2409.17681v1
- Date: Thu, 26 Sep 2024 09:46:43 GMT
- Title: Computation Pre-Offloading for MEC-Enabled Vehicular Networks via Trajectory Prediction
- Authors: Ting Zhang, Bo Yang, Zhiwen Yu, Xuelin Cao, George C. Alexandropoulos, Yan Zhang, Chau Yuen,
- Abstract summary: We present a Trajectory Prediction-based Pre-offloading Decision (TPPD) algorithm for analyzing the historical trajectories of vehicles.
We devise a dynamic resource allocation algorithm using a Double Deep Q-Network (DDQN) that enables the edge server to minimize task processing delay.
- Score: 38.493882483362135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Task offloading is of paramount importance to efficiently orchestrate vehicular wireless networks, necessitating the availability of information regarding the current network status and computational resources. However, due to the mobility of the vehicles and the limited computational resources for performing task offloading in near-real-time, such schemes may require high latency, thus, become even infeasible. To address this issue, in this paper, we present a Trajectory Prediction-based Pre-offloading Decision (TPPD) algorithm for analyzing the historical trajectories of vehicles to predict their future coordinates, thereby allowing for computational resource allocation in advance. We first utilize the Long Short-Term Memory (LSTM) network model to predict each vehicle's movement trajectory. Then, based on the task requirements and the predicted trajectories, we devise a dynamic resource allocation algorithm using a Double Deep Q-Network (DDQN) that enables the edge server to minimize task processing delay, while ensuring effective utilization of the available computational resources. Our simulation results verify the effectiveness of the proposed approach, showcasing that, as compared with traditional real-time task offloading strategies, the proposed TPPD algorithm significantly reduces task processing delay while improving resource utilization.
Related papers
- DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Structural Knowledge-Driven Meta-Learning for Task Offloading in
Vehicular Networks with Integrated Communications, Sensing and Computing [21.50450449083369]
Task offloading is a potential solution to satisfy the strict requirements of latencysensitive vehicular applications due to the limited onboard computing resources.
We propose a creative structural knowledge-driven meta-learning (SKDML) method, involving both the model-based AM algorithm and neural networks.
arXiv Detail & Related papers (2024-02-25T03:31:59Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
We consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints.
Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration.
arXiv Detail & Related papers (2023-05-02T07:41:16Z) - Accuracy-Guaranteed Collaborative DNN Inference in Industrial IoT via
Deep Reinforcement Learning [10.223526707269537]
Collaboration among industrial Internet of Things (IoT) devices and edge networks is essential to support computation-intensive deep neural network (DNN) inference services.
In this paper, we investigate the collaborative inference problem in industrial IoT networks.
arXiv Detail & Related papers (2022-12-31T05:53:17Z) - Computation Offloading and Resource Allocation in F-RANs: A Federated
Deep Reinforcement Learning Approach [67.06539298956854]
fog radio access network (F-RAN) is a promising technology in which the user mobile devices (MDs) can offload computation tasks to the nearby fog access points (F-APs)
arXiv Detail & Related papers (2022-06-13T02:19:20Z) - Revenue and Energy Efficiency-Driven Delay Constrained Computing Task
Offloading and Resource Allocation in a Vehicular Edge Computing Network: A
Deep Reinforcement Learning Approach [13.400466824558915]
Joint impact of task type and vehicle speed on the task delay constraint has not been studied.
We propose a joint task type and vehicle speed-aware task offloading and resource allocation strategy.
Our algorithm can achieve superior performance in task completion delay, vehicles' energy cost and processing revenue.
arXiv Detail & Related papers (2020-10-16T02:45:05Z) - Deep Reinforcement Learning for Delay-Oriented IoT Task Scheduling in
Space-Air-Ground Integrated Network [24.022108191145527]
We investigate a computing task scheduling problem in space-air-ground integrated network (SAGIN) for delay-oriented Internet of Things (IoT) services.
In the considered scenario, an unmanned aerial vehicle (UAV) collects computing tasks from IoT devices and then makes online offloading decisions.
Our objective is to design a task scheduling policy that minimizes offloading and computing delay of all tasks given the UAV energy capacity constraint.
arXiv Detail & Related papers (2020-10-04T02:58:03Z) - A Machine Learning Approach for Task and Resource Allocation in Mobile
Edge Computing Based Networks [108.57859531628264]
A joint task, spectrum, and transmit power allocation problem is investigated for a wireless network.
The proposed algorithm can reduce the number of iterations needed for convergence and the maximal delay among all users by up to 18% and 11.1% compared to the standard Q-learning algorithm.
arXiv Detail & Related papers (2020-07-20T13:46:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.