Recent advances in interpretable machine learning using structure-based protein representations
- URL: http://arxiv.org/abs/2409.17726v1
- Date: Thu, 26 Sep 2024 10:56:27 GMT
- Title: Recent advances in interpretable machine learning using structure-based protein representations
- Authors: Luiz Felipe Vecchietti, Minji Lee, Begench Hangeldiyev, Hyunkyu Jung, Hahnbeom Park, Tae-Kyun Kim, Meeyoung Cha, Ho Min Kim,
- Abstract summary: Recent advancements in machine learning (ML) are transforming the field of structural biology.
We present various methods for representing protein 3D structures from low to high-resolution.
We show how interpretable ML methods can support tasks such as predicting protein structures, protein function, and protein-protein interactions.
- Score: 30.907048279915312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in machine learning (ML) are transforming the field of structural biology. For example, AlphaFold, a groundbreaking neural network for protein structure prediction, has been widely adopted by researchers. The availability of easy-to-use interfaces and interpretable outcomes from the neural network architecture, such as the confidence scores used to color the predicted structures, have made AlphaFold accessible even to non-ML experts. In this paper, we present various methods for representing protein 3D structures from low- to high-resolution, and show how interpretable ML methods can support tasks such as predicting protein structures, protein function, and protein-protein interactions. This survey also emphasizes the significance of interpreting and visualizing ML-based inference for structure-based protein representations that enhance interpretability and knowledge discovery. Developing such interpretable approaches promises to further accelerate fields including drug development and protein design.
Related papers
- CPE-Pro: A Structure-Sensitive Deep Learning Method for Protein Representation and Origin Evaluation [7.161099050722313]
We develop a structure-sensitive supervised deep learning model, Crystal vs Predicted Evaluator for Protein Structure (CPE-Pro)
CPE-Pro learns the structural information of proteins and captures inter-structural differences to achieve accurate traceability on four data classes.
We utilize Foldseek to encode protein structures into "structure-sequences" and trained a protein Structural Sequence Language Model, SSLM.
arXiv Detail & Related papers (2024-10-21T02:21:56Z) - Endowing Protein Language Models with Structural Knowledge [5.587293092389789]
We introduce a novel framework that enhances protein language models by integrating protein structural data.
The refined model, termed Protein Structure Transformer (PST), is further pretrained on a small protein structure database.
PST consistently outperforms the state-of-the-art foundation model for protein sequences, ESM-2, setting a new benchmark in protein function prediction.
arXiv Detail & Related papers (2024-01-26T12:47:54Z) - Protein 3D Graph Structure Learning for Robust Structure-based Protein
Property Prediction [43.46012602267272]
Protein structure-based property prediction has emerged as a promising approach for various biological tasks.
Current practices, which simply employ accurately predicted structures during inference, suffer from notable degradation in prediction accuracy.
Our framework is model-agnostic and effective in improving the property prediction of both predicted structures and experimental structures.
arXiv Detail & Related papers (2023-10-14T08:43:42Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
We present LM-Design, a generic approach to reprogramming sequence-based protein language models (pLMs)
We conduct a structural surgery on pLMs, where a lightweight structural adapter is implanted into pLMs and endows it with structural awareness.
Experiments show that our approach outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2023-02-03T10:49:52Z) - A Survey on Protein Representation Learning: Retrospect and Prospect [42.38007308086495]
Protein representation learning is a promising research topic for extracting informative knowledge from massive protein sequences or structures.
We introduce the motivations for protein representation learning and formulate it in a general and unified framework.
Next, we divide existing PRL methods into three main categories: sequence-based, structure-based, and sequence-structure co-modeling.
arXiv Detail & Related papers (2022-12-31T04:01:16Z) - Integration of Pre-trained Protein Language Models into Geometric Deep
Learning Networks [68.90692290665648]
We integrate knowledge learned by protein language models into several state-of-the-art geometric networks.
Our findings show an overall improvement of 20% over baselines.
Strong evidence indicates that the incorporation of protein language models' knowledge enhances geometric networks' capacity by a significant margin.
arXiv Detail & Related papers (2022-12-07T04:04:04Z) - Contrastive Representation Learning for 3D Protein Structures [13.581113136149469]
We introduce a new representation learning framework for 3D protein structures.
Our framework uses unsupervised contrastive learning to learn meaningful representations of protein structures.
We show, how these representations can be used to solve a large variety of tasks, such as protein function prediction, protein fold classification, structural similarity prediction, and protein-ligand binding affinity prediction.
arXiv Detail & Related papers (2022-05-31T10:33:06Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
We propose a novel structure-aware protein self-supervised learning method to capture structural information of proteins.
In particular, a well-designed graph neural network (GNN) model is pretrained to preserve the protein structural information.
We identify the relation between the sequential information in the protein language model and the structural information in the specially designed GNN model via a novel pseudo bi-level optimization scheme.
arXiv Detail & Related papers (2022-04-06T02:18:41Z) - Transfer Learning for Protein Structure Classification at Low Resolution [124.5573289131546]
We show that it is possible to make accurate ($geq$80%) predictions of protein class and architecture from structures determined at low ($leq$3A) resolution.
We provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function.
arXiv Detail & Related papers (2020-08-11T15:01:32Z) - BERTology Meets Biology: Interpreting Attention in Protein Language
Models [124.8966298974842]
We demonstrate methods for analyzing protein Transformer models through the lens of attention.
We show that attention captures the folding structure of proteins, connecting amino acids that are far apart in the underlying sequence, but spatially close in the three-dimensional structure.
We also present a three-dimensional visualization of the interaction between attention and protein structure.
arXiv Detail & Related papers (2020-06-26T21:50:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.