SECURE: Semantics-aware Embodied Conversation under Unawareness for Lifelong Robot Learning
- URL: http://arxiv.org/abs/2409.17755v1
- Date: Thu, 26 Sep 2024 11:40:07 GMT
- Title: SECURE: Semantics-aware Embodied Conversation under Unawareness for Lifelong Robot Learning
- Authors: Rimvydas Rubavicius, Peter David Fagan, Alex Lascarides, Subramanian Ramamoorthy,
- Abstract summary: This paper addresses a challenging interactive task learning scenario where the robot is unaware of a concept that's key to solving the instructed task.
We propose SECURE, an interactive task learning framework designed to solve such problems by fixing a deficient domain model using embodied conversation.
Using SECURE, the robot not only learns from the user's corrective feedback when it makes a mistake, but it also learns to make strategic dialogue decisions for revealing useful evidence about novel concepts for solving the instructed task.
- Score: 17.125080112897102
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper addresses a challenging interactive task learning scenario we call rearrangement under unawareness: to manipulate a rigid-body environment in a context where the robot is unaware of a concept that's key to solving the instructed task. We propose SECURE, an interactive task learning framework designed to solve such problems by fixing a deficient domain model using embodied conversation. Through dialogue, the robot discovers and then learns to exploit unforeseen possibilities. Using SECURE, the robot not only learns from the user's corrective feedback when it makes a mistake, but it also learns to make strategic dialogue decisions for revealing useful evidence about novel concepts for solving the instructed task. Together, these abilities allow the robot to generalise to subsequent tasks using newly acquired knowledge. We demonstrate that a robot that is semantics-aware -- that is, it exploits the logical consequences of both sentence and discourse semantics in the learning and inference process -- learns to solve rearrangement under unawareness more effectively than a robot that lacks such capabilities.
Related papers
- Understanding Learner-LLM Chatbot Interactions and the Impact of Prompting Guidelines [9.834055425277874]
This study investigates learner-AI interactions through an educational experiment in which participants receive structured guidance on effective prompting.
To assess user behavior and prompting efficacy, we analyze a dataset of 642 interactions from 107 users.
Our findings provide a deeper understanding of how users engage with Large Language Models and the role of structured prompting guidance in enhancing AI-assisted communication.
arXiv Detail & Related papers (2025-04-10T15:20:43Z) - A Desideratum for Conversational Agents: Capabilities, Challenges, and Future Directions [51.96890647837277]
Large Language Models (LLMs) have propelled conversational AI from traditional dialogue systems into sophisticated agents capable of autonomous actions, contextual awareness, and multi-turn interactions with users.
This survey paper presents a desideratum for next-generation Conversational Agents - what has been achieved, what challenges persist, and what must be done for more scalable systems that approach human-level intelligence.
arXiv Detail & Related papers (2025-04-07T21:01:25Z) - Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AI agents are increasingly being deployed to automate tasks, often based on ambiguous and underspecified user instructions.
Making unwarranted assumptions and failing to ask clarifying questions can lead to suboptimal outcomes.
We study the ability of LLM agents to handle ambiguous instructions in interactive code generation settings by evaluating proprietary and open-weight models on their performance.
arXiv Detail & Related papers (2025-02-18T17:12:26Z) - Memento No More: Coaching AI Agents to Master Multiple Tasks via Hints Internalization [56.674356045200696]
We propose a novel method to train AI agents to incorporate knowledge and skills for multiple tasks without the need for cumbersome note systems or prior high-quality demonstration data.
Our approach employs an iterative process where the agent collects new experiences, receives corrective feedback from humans in the form of hints, and integrates this feedback into its weights.
We demonstrate the efficacy of our approach by implementing it in a Llama-3-based agent which, after only a few rounds of feedback, outperforms advanced models GPT-4o and DeepSeek-V3 in a taskset.
arXiv Detail & Related papers (2025-02-03T17:45:46Z) - Unsupervised Skill Discovery for Robotic Manipulation through Automatic Task Generation [17.222197596599685]
We propose a Skill Learning approach that discovers composable behaviors by solving a large number of autonomously generated tasks.
Our method learns skills allowing the robot to consistently and robustly interact with objects in its environment.
The learned skills can be used to solve a set of unseen manipulation tasks, in simulation as well as on a real robotic platform.
arXiv Detail & Related papers (2024-10-07T09:19:13Z) - Self-Explainable Affordance Learning with Embodied Caption [63.88435741872204]
We introduce Self-Explainable Affordance learning (SEA) with embodied caption.
SEA enables robots to articulate their intentions and bridge the gap between explainable vision-language caption and visual affordance learning.
We propose a novel model to effectively combine affordance grounding with self-explanation in a simple but efficient manner.
arXiv Detail & Related papers (2024-04-08T15:22:38Z) - Incremental Learning of Humanoid Robot Behavior from Natural Interaction and Large Language Models [23.945922720555146]
We propose a system to achieve incremental learning of complex behavior from natural interaction.
We integrate the system in the robot cognitive architecture of the humanoid robot ARMAR-6.
arXiv Detail & Related papers (2023-09-08T13:29:05Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - "No, to the Right" -- Online Language Corrections for Robotic
Manipulation via Shared Autonomy [70.45420918526926]
We present LILAC, a framework for incorporating and adapting to natural language corrections online during execution.
Instead of discrete turn-taking between a human and robot, LILAC splits agency between the human and robot.
We show that our corrections-aware approach obtains higher task completion rates, and is subjectively preferred by users.
arXiv Detail & Related papers (2023-01-06T15:03:27Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
We describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks.
Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples.
experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world.
arXiv Detail & Related papers (2022-12-19T22:50:40Z) - Explaining Agent's Decision-making in a Hierarchical Reinforcement
Learning Scenario [0.6643086804649938]
Reinforcement learning is a machine learning approach based on behavioral psychology.
In this work, we make use of the memory-based explainable reinforcement learning method in a hierarchical environment composed of sub-tasks.
arXiv Detail & Related papers (2022-12-14T01:18:45Z) - Semantic Interactive Learning for Text Classification: A Constructive
Approach for Contextual Interactions [0.0]
We propose a novel interaction framework called Semantic Interactive Learning for the text domain.
We frame the problem of incorporating constructive and contextual feedback into the learner as a task to find an architecture that enables more semantic alignment between humans and machines.
We introduce a technique called SemanticPush that is effective for translating conceptual corrections of humans to non-extrapolating training examples.
arXiv Detail & Related papers (2022-09-07T08:13:45Z) - Utterance Rewriting with Contrastive Learning in Multi-turn Dialogue [22.103162555263143]
We introduce contrastive learning and multi-task learning to jointly model the problem.
Our proposed model achieves state-of-the-art performance on several public datasets.
arXiv Detail & Related papers (2022-03-22T10:13:27Z) - Teachable Reinforcement Learning via Advice Distillation [161.43457947665073]
We propose a new supervision paradigm for interactive learning based on "teachable" decision-making systems that learn from structured advice provided by an external teacher.
We show that agents that learn from advice can acquire new skills with significantly less human supervision than standard reinforcement learning algorithms.
arXiv Detail & Related papers (2022-03-19T03:22:57Z) - Talk-to-Resolve: Combining scene understanding and spatial dialogue to
resolve granular task ambiguity for a collocated robot [15.408128612723882]
The utility of collocating robots largely depends on the easy and intuitive interaction mechanism with the human.
We present a system called Talk-to-Resolve (TTR) that enables a robot to initiate a coherent dialogue exchange with the instructor.
Our system can identify the stalemate and resolve them with appropriate dialogue exchange with 82% accuracy.
arXiv Detail & Related papers (2021-11-22T10:42:59Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
Many multi-task reinforcement learning efforts assume the robot can collect data from all tasks at all times.
In this work, we study a practical sequential multi-task RL problem motivated by the practical constraints of physical robotic systems.
We derive an approach that effectively leverages the data and policies learned for previous tasks to cumulatively grow the robot's skill-set.
arXiv Detail & Related papers (2021-09-19T18:00:51Z) - Axiom Learning and Belief Tracing for Transparent Decision Making in
Robotics [8.566457170664926]
A robot's ability to provide descriptions of its decisions and beliefs promotes effective collaboration with humans.
Our architecture couples the complementary strengths of non-monotonic logical reasoning, deep learning, and decision-tree induction.
During reasoning and learning, the architecture enables a robot to provide on-demand relational descriptions of its decisions, beliefs, and the outcomes of hypothetical actions.
arXiv Detail & Related papers (2020-10-20T22:09:17Z) - Learning Adaptive Language Interfaces through Decomposition [89.21937539950966]
We introduce a neural semantic parsing system that learns new high-level abstractions through decomposition.
Users interactively teach the system by breaking down high-level utterances describing novel behavior into low-level steps.
arXiv Detail & Related papers (2020-10-11T08:27:07Z) - Hierarchical Affordance Discovery using Intrinsic Motivation [69.9674326582747]
We propose an algorithm using intrinsic motivation to guide the learning of affordances for a mobile robot.
This algorithm is capable to autonomously discover, learn and adapt interrelated affordances without pre-programmed actions.
Once learned, these affordances may be used by the algorithm to plan sequences of actions in order to perform tasks of various difficulties.
arXiv Detail & Related papers (2020-09-23T07:18:21Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
We introduce four self-supervised tasks including next session prediction, utterance restoration, incoherence detection and consistency discrimination.
We jointly train the PLM-based response selection model with these auxiliary tasks in a multi-task manner.
Experiment results indicate that the proposed auxiliary self-supervised tasks bring significant improvement for multi-turn response selection.
arXiv Detail & Related papers (2020-09-14T08:44:46Z) - Dialog Policy Learning for Joint Clarification and Active Learning
Queries [24.420113907842147]
We train a hierarchical dialog policy to jointly perform both clarification and active learning.
We show that jointly learning dialog policies for clarification and active learning is more effective than the use of static dialog policies for one or both of these functions.
arXiv Detail & Related papers (2020-06-09T18:53:21Z) - Learning and Reasoning for Robot Dialog and Navigation Tasks [44.364322669414776]
We develop algorithms for robot task completions, while looking into the complementary strengths of reinforcement learning and probabilistic reasoning techniques.
The robots learn from trial-and-error experiences to augment their declarative knowledge base.
We have implemented and evaluated the developed algorithms using mobile robots conducting dialog and navigation tasks.
arXiv Detail & Related papers (2020-05-20T03:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.