論文の概要: UNICORN: A Deep Learning Model for Integrating Multi-Stain Data in Histopathology
- arxiv url: http://arxiv.org/abs/2409.17775v1
- Date: Thu, 26 Sep 2024 12:13:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 19:53:49.687738
- Title: UNICORN: A Deep Learning Model for Integrating Multi-Stain Data in Histopathology
- Title(参考訳): UNICORN: 病理組織学における多段階データ統合のための深層学習モデル
- Authors: Valentin Koch, Sabine Bauer, Valerio Luppberger, Michael Joner, Heribert Schunkert, Julia A. Schnabel, Moritz von Scheidt, Carsten Marr,
- Abstract要約: UNICORNは動脈硬化の重症度予測のための多段階組織学を処理できるマルチモーダルトランスフォーマーである。
このアーキテクチャは、2段階のエンドツーエンドのトレーニング可能なモデルと、トランスフォーマーの自己保持ブロックを利用する特殊なモジュールから構成される。
UNICORNは0.67の分類精度を達成し、他の最先端モデルを上回った。
- 参考スコア(独自算出の注目度): 2.9389205138207277
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: The integration of multi-stain histopathology images through deep learning poses a significant challenge in digital histopathology. Current multi-modal approaches struggle with data heterogeneity and missing data. This study aims to overcome these limitations by developing a novel transformer model for multi-stain integration that can handle missing data during training as well as inference. Methods: We propose UNICORN (UNiversal modality Integration Network for CORonary classificatioN) a multi-modal transformer capable of processing multi-stain histopathology for atherosclerosis severity class prediction. The architecture comprises a two-stage, end-to-end trainable model with specialized modules utilizing transformer self-attention blocks. The initial stage employs domain-specific expert modules to extract features from each modality. In the subsequent stage, an aggregation expert module integrates these features by learning the interactions between the different data modalities. Results: Evaluation was performed using a multi-class dataset of atherosclerotic lesions from the Munich Cardiovascular Studies Biobank (MISSION), using over 4,000 paired multi-stain whole slide images (WSIs) from 170 deceased individuals on 7 prespecified segments of the coronary tree, each stained according to four histopathological protocols. UNICORN achieved a classification accuracy of 0.67, outperforming other state-of-the-art models. The model effectively identifies relevant tissue phenotypes across stainings and implicitly models disease progression. Conclusion: Our proposed multi-modal transformer model addresses key challenges in medical data analysis, including data heterogeneity and missing modalities. Explainability and the model's effectiveness in predicting atherosclerosis progression underscores its potential for broader applications in medical research.
- Abstract(参考訳): 背景: 深層学習による多点組織像の統合は, デジタル病理学において重要な課題となっている。
現在のマルチモーダルアプローチは、データの不均一性と欠落データに悩まされている。
本研究の目的は、学習中に欠落したデータと推論を処理できるマルチステイン統合のための新しいトランスフォーマーモデルを開発することにより、これらの制限を克服することである。
方法: 動脈硬化重症度予測のための多段階組織学を処理可能なマルチモーダルトランスフォーマーであるUNICORN(Universal modality Integration Network for CORonary ClassificatioN)を提案する。
このアーキテクチャは、2段階のエンドツーエンドのトレーニング可能なモデルと、トランスフォーマーの自己保持ブロックを利用する特殊なモジュールから構成される。
最初の段階ではドメイン固有のエキスパートモジュールを使用して、各モダリティから特徴を抽出する。
その後の段階で、アグリゲーションエキスパートモジュールは、異なるデータモダリティ間の相互作用を学習することでこれらの特徴を統合する。
結果: ミュンヘン心血管部バイオバンク (MISSION) の動脈硬化性病変のマルチクラスデータセットを用いて, 冠状動脈の7つの未特定部位について, 170名以上の死亡者から4000名以上の全スライド画像 (WSI) を用いて, それぞれ4つの病理組織学的プロトコルに従って染色した。
UNICORNは0.67の分類精度を達成し、他の最先端モデルを上回った。
このモデルは、染色と暗黙的に疾患進行をモデル化する組織表現型を効果的に同定する。
結論: 提案したマルチモーダルトランスフォーマーモデルは,データ不均一性や欠落モードを含む,医療データ分析における重要な課題に対処する。
動脈硬化進展の予測における説明可能性とモデルの有効性は、医学研究における幅広い応用の可能性を示している。
関連論文リスト
- FORESEE: Multimodal and Multi-view Representation Learning for Robust Prediction of Cancer Survival [3.4686401890974197]
マルチモーダル情報のマイニングにより患者生存を確実に予測する新しいエンドツーエンドフレームワークFOESEEを提案する。
クロスフュージョントランスフォーマーは、細胞レベル、組織レベル、腫瘍の不均一度レベルの特徴を効果的に利用し、予後を相関させる。
ハイブリットアテンションエンコーダ(HAE)は、コンテキストアテンションモジュールを用いて、コンテキスト関係の特徴を取得する。
また、モダリティ内の損失情報を再構成する非対称マスク型3重マスク型オートエンコーダを提案する。
論文 参考訳(メタデータ) (2024-05-13T12:39:08Z) - Multi-Modal Federated Learning for Cancer Staging over Non-IID Datasets with Unbalanced Modalities [9.476402318365446]
本研究では,データサンプルの不均一性だけでなく,機関間のデータモダリティの固有不均一性と不均一性を両立する新しいFLアーキテクチャを提案する。
マルチモーダルFLに適した分散勾配ブレンディングと近接対応クライアント重み付け戦略を考案した。
論文 参考訳(メタデータ) (2024-01-07T23:45:01Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
本稿では,フレキシブルなマルチモーダル融合アーキテクチャであるHybrid Early-fusion Attention Learning Network (HEALNet)を提案する。
The Cancer Genome Atlas (TCGA) の4つのがんデータセットにおける全スライド画像と多モードデータを用いたマルチモーダルサバイバル解析を行った。
HEALNetは、他のエンドツーエンドの訓練された融合モデルと比較して最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-15T17:06:26Z) - MaxCorrMGNN: A Multi-Graph Neural Network Framework for Generalized
Multimodal Fusion of Medical Data for Outcome Prediction [3.2889220522843625]
我々はMaxCorr MGNNと呼ばれる革新的な融合手法を開発し、患者内および患者間の非線形モダリティ相関をモデル化する。
次に,多層グラフにおけるタスクインフォームド推論のための汎用多層グラフニューラルネットワーク(MGNN)を初めて設計する。
我々は,本モデルを結核データセットにおける結果予測タスクとして評価し,最先端のニューラルネットワーク,グラフベース,従来の融合技術より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-07-13T23:52:41Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Medical Diagnosis with Large Scale Multimodal Transformers: Leveraging
Diverse Data for More Accurate Diagnosis [0.15776842283814416]
我々は「学習可能なシナジー」の新しい技術的アプローチを提案する。
我々のアプローチは容易に拡張可能であり、臨床ルーチンからのマルチモーダルデータ入力に自然に適応する。
臨床的に関連のある診断タスクにおいて、最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2022-12-18T20:43:37Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
被験者の大規模なコホートを含むグループ研究は、脳機能組織に関する一般的な結論を引き出す上で重要である。
グループ研究のための新しい多視点独立成分分析モデルを提案し、各被験者のデータを共有独立音源と雑音の線形結合としてモデル化する。
まず、fMRIデータを用いて、被験者間の共通音源の同定における感度の向上を示す。
論文 参考訳(メタデータ) (2020-06-11T17:29:53Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。