論文の概要: Ophthalmic Biomarker Detection with Parallel Prediction of Transformer and Convolutional Architecture
- arxiv url: http://arxiv.org/abs/2409.17788v1
- Date: Thu, 26 Sep 2024 12:33:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 19:42:02.063915
- Title: Ophthalmic Biomarker Detection with Parallel Prediction of Transformer and Convolutional Architecture
- Title(参考訳): トランスフォーマーと畳み込みアーキテクチャの並列予測による眼科バイオマーカー検出
- Authors: Md. Touhidul Islam, Md. Abtahi Majeed Chowdhury, Mahmudul Hasan, Asif Quadir, Lutfa Aktar,
- Abstract要約: 本稿では,CNNとVision Transformerのアンサンブルを用いた眼科バイオマーカー検出手法を提案する。
本手法はOCT画像から6つのバイオマーカーを検出するためにOLIVESデータセット上に実装され,データセット上でのマクロ平均F1スコアの大幅な改善を示す。
- 参考スコア(独自算出の注目度): 1.6893691730575022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ophthalmic diseases represent a significant global health issue, necessitating the use of advanced precise diagnostic tools. Optical Coherence Tomography (OCT) imagery which offers high-resolution cross-sectional images of the retina has become a pivotal imaging modality in ophthalmology. Traditionally physicians have manually detected various diseases and biomarkers from such diagnostic imagery. In recent times, deep learning techniques have been extensively used for medical diagnostic tasks enabling fast and precise diagnosis. This paper presents a novel approach for ophthalmic biomarker detection using an ensemble of Convolutional Neural Network (CNN) and Vision Transformer. While CNNs are good for feature extraction within the local context of the image, transformers are known for their ability to extract features from the global context of the image. Using an ensemble of both techniques allows us to harness the best of both worlds. Our method has been implemented on the OLIVES dataset to detect 6 major biomarkers from the OCT images and shows significant improvement of the macro averaged F1 score on the dataset.
- Abstract(参考訳): 眼科疾患は重要な世界的な健康問題であり、高度な正確な診断ツールが必要である。
光コヒーレンス・トモグラフィー(OCT)画像は、網膜の高分解能断面像を提供しており、眼科における重要な画像モダリティとなっている。
従来、医師は診断画像から様々な疾患やバイオマーカーを手動で検出してきた。
近年、深層学習技術は、迅速かつ正確な診断を可能にする医療診断タスクに広く用いられている。
本稿では,CNNとVision Transformerのアンサンブルを用いた眼科バイオマーカー検出手法を提案する。
CNNは画像の局所的なコンテキストにおける特徴抽出に適しているが、トランスフォーマーは画像のグローバルなコンテキストから特徴を抽出できることで知られている。
両方のテクニックのアンサンブルを使用することで、両方の世界のベストを活用できます。
本手法はOCT画像から6つのバイオマーカーを検出するためにOLIVESデータセット上に実装され,データセット上でのマクロ平均F1スコアの大幅な改善を示す。
関連論文リスト
- Cross-Modal Domain Adaptation in Brain Disease Diagnosis: Maximum Mean Discrepancy-based Convolutional Neural Networks [0.0]
脳障害は世界の健康にとって大きな課題であり、毎年何百万人もの死者を出している。
これらの疾患の正確な診断は、MRIやCTのような高度な医療画像技術に大きく依存している。
注釈付きデータの不足は、診断のための機械学習モデルをデプロイする上で大きな課題となる。
論文 参考訳(メタデータ) (2024-05-06T07:44:46Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - MVC: A Multi-Task Vision Transformer Network for COVID-19 Diagnosis from
Chest X-ray Images [10.616065108433798]
本稿では,胸部X線画像を同時に分類し,入力データから影響領域を識別するマルチタスク・ビジョン・トランスフォーマ(MVC)を提案する。
提案手法はVision Transformer上に構築されているが,マルチタスク設定で学習能力を拡張している。
論文 参考訳(メタデータ) (2023-09-30T15:52:18Z) - A Novel Vision Transformer with Residual in Self-attention for
Biomedical Image Classification [8.92307560991779]
本稿では、視覚変換器(ViT)のためのマルチヘッド自己注意の新しい枠組みについて述べる。
提案手法は,マルチヘッドアテンションの各ブロックにおける最高のアテンション出力を蓄積するために,残差接続の概念を用いる。
その結果、従来のViTや他の畳み込みに基づく最先端の分類モデルよりも顕著な改善が見られた。
論文 参考訳(メタデータ) (2023-06-02T15:06:14Z) - MultiNet with Transformers: A Model for Cancer Diagnosis Using Images [8.686667049158476]
医用画像のマルチクラス分類のための独自のディープニューラルネットワーク設計を提供する。
データ収集機能を活用し,より正確な分類を行うために,トランスフォーマーをマルチクラスフレームワークに組み込んだ。
論文 参考訳(メタデータ) (2023-01-21T20:53:57Z) - Cross-modal Clinical Graph Transformer for Ophthalmic Report Generation [116.87918100031153]
眼科報告生成(ORG)のためのクロスモーダルな臨床グラフ変換器(CGT)を提案する。
CGTは、デコード手順を駆動する事前知識として、臨床関係を視覚特徴に注入する。
大規模FFA-IRベンチマークの実験は、提案したCGTが従来のベンチマーク手法より優れていることを示した。
論文 参考訳(メタデータ) (2022-06-04T13:16:30Z) - Lymphocyte Classification in Hyperspectral Images of Ovarian Cancer
Tissue Biopsy Samples [94.37521840642141]
生検コアのハイパースペクトル画像に白血球画素を分割する機械学習パイプラインを提案する。
これらの細胞は臨床的に診断に重要であるが、いくつかの先行研究は正確なピクセルラベルを得るのが困難であるため、それらを組み込むのに苦労している。
論文 参考訳(メタデータ) (2022-03-23T00:58:27Z) - Self-Supervised Vision Transformers Learn Visual Concepts in
Histopathology [5.164102666113966]
我々は、様々な弱い教師付きおよびパッチレベルのタスクに対する検証を行い、様々な自己教師付きモデルを訓練することにより、病理学における良い表現を探索する。
我々の重要な発見は、DINOベースの知識蒸留を用いたビジョントランスフォーマーが、組織像におけるデータ効率と解釈可能な特徴を学習できることを発見したことである。
論文 参考訳(メタデータ) (2022-03-01T16:14:41Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
本研究は、COVID-19 LCXRデータ不足のバランスをとるために画像変換を適用するために、文献の体系を活用することを目的としている。
convolutional neural networks(cnns)のようなディープラーニング技術は、健康状態と疾患状態を区別する特徴を選択することができる。
本研究は,CNNアーキテクチャを用いて高速多クラスLCXR分類を94%精度で行う。
論文 参考訳(メタデータ) (2021-04-06T02:01:43Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
ハイパースペクトル画像とディープラーニングを用いたin-vivo腫瘍型分類の可能性を示した。
我々の最良のモデルは76.3%のAUCを達成し、従来の学習手法とディープラーニング手法を著しく上回っている。
論文 参考訳(メタデータ) (2020-07-02T12:00:53Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。