論文の概要: Machine Learning-based vs Deep Learning-based Anomaly Detection in
Multivariate Time Series for Spacecraft Attitude Sensors
- arxiv url: http://arxiv.org/abs/2409.17841v1
- Date: Thu, 26 Sep 2024 13:45:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 18:44:57.004574
- Title: Machine Learning-based vs Deep Learning-based Anomaly Detection in
Multivariate Time Series for Spacecraft Attitude Sensors
- Title(参考訳): 機械学習とディープラーニングによる異常検出
宇宙機姿勢センサのための多変量時系列
- Authors: R. Gallon, F. Schiemenz, A. Krstova, A. Menicucci, E. Gill
- Abstract要約: 本研究の目的は、宇宙船の姿勢センサから得られる多変量時系列におけるスタンプ値検出問題に対する2つの異なるアプローチを特徴付けることである。
この分析は2つのアプローチのパフォーマンスの違いを明らかにし、解釈可能性と異なるシナリオへの一般化についてコメントする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the framework of Failure Detection, Isolation and Recovery (FDIR) on
spacecraft, new AI-based approaches are emerging in the state of the art to
overcome the limitations commonly imposed by traditional threshold checking.
The present research aims at characterizing two different approaches to the
problem of stuck values detection in multivariate time series coming from
spacecraft attitude sensors. The analysis reveals the performance differences
in the two approaches, while commenting on their interpretability and
generalization to different scenarios.
- Abstract(参考訳): 宇宙船の故障検出・隔離・回復(FDIR)の枠組みでは、従来のしきい値チェックによって課される制限を克服するために、最先端のAIベースの新たなアプローチが出現している。
本研究の目的は、宇宙船の姿勢センサから得られる多変量時系列におけるスタンプ値検出問題に対する2つの異なるアプローチを特徴付けることである。
この分析は2つのアプローチのパフォーマンスの違いを明らかにし、解釈可能性と異なるシナリオへの一般化についてコメントする。
関連論文リスト
- Convolutional Neural Network Design and Evaluation for Real-Time Multivariate Time Series Fault Detection in Spacecraft Attitude Sensors [41.94295877935867]
本稿では,ドローンのような宇宙船の加速度計および慣性測定ユニット内のスタンプ値を検出するための新しい手法を提案する。
マルチチャネル畳み込みニューラルネットワーク(CNN)は、マルチターゲット分類を実行し、センサ内の障害を独立に検出するために使用される。
ネットワークの異常を効果的に検出し,システムレベルでの回復動作をトリガーする統合手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T09:36:38Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - A Reliable Framework for Human-in-the-Loop Anomaly Detection in Time Series [17.08674819906415]
HILADは、人間とAIの動的かつ双方向なコラボレーションを促進するために設計された、新しいフレームワークである。
ビジュアルインターフェースを通じて、HILADはドメインの専門家に、大規模な予期せぬモデルの振る舞いを検出し、解釈し、修正する権限を与えます。
論文 参考訳(メタデータ) (2024-05-06T07:44:07Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Assaying on the Robustness of Zero-Shot Machine-Generated Text Detectors [57.7003399760813]
先進的なLarge Language Models (LLMs) とその特殊な変種を探索し、いくつかの方法でこの分野に寄与する。
トピックと検出性能の間に有意な相関関係が発見された。
これらの調査は、様々なトピックにまたがるこれらの検出手法の適応性と堅牢性に光を当てた。
論文 参考訳(メタデータ) (2023-12-20T10:53:53Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
異常ラベルは時系列異常検出において従来の教師付きモデルを妨げる。
自己教師型学習のような様々なSOTA深層学習技術がこの問題に対処するために導入されている。
自己教師型3領域異常検出器(TriAD)を提案する。
論文 参考訳(メタデータ) (2023-11-19T05:37:18Z) - Beyond the Benchmark: Detecting Diverse Anomalies in Videos [0.6993026261767287]
ビデオ異常検出(VAD)は、現代の監視システムにおいて重要な役割を担い、現実の状況における様々な異常を識別することを目的としている。
現在のベンチマークデータセットは、新しいオブジェクト検出のような単純な単一フレームの異常を主に強調している。
我々は,従来のベンチマーク境界を超える複雑な異常を包含するVAD調査の拡大を提唱する。
論文 参考訳(メタデータ) (2023-10-03T09:22:06Z) - DyEdgeGAT: Dynamic Edge via Graph Attention for Early Fault Detection in
IIoT Systems [12.641578474466646]
DyEdgeGATは、IIoTシステムにおける早期故障検出の新しいアプローチである。
動作条件コンテキストをノードダイナミックスモデリングに組み込んで、その正確性と堅牢性を高める。
我々は,DyEdgeGATを人工データセットと実世界の産業規模フロー施設ベンチマークの両方を用いて厳格に評価した。
論文 参考訳(メタデータ) (2023-07-07T12:22:16Z) - Multi-scale Fusion Fault Diagnosis Method Based on Two-Dimensionaliztion
Sequence in Complex Scenarios [0.0]
転がり軸受は回転機械において重要な要素であり、その欠陥は深刻な損傷を引き起こす可能性がある。
異常の早期発見は破滅的な事故を防ぐために不可欠である。
従来のインテリジェントな手法は時系列データを解析するのに用いられてきたが、現実のシナリオでは、センサデータはノイズが多く、時間領域で正確に特徴付けることはできない。
本稿では,産業シナリオに展開するためのマルチスケール機能融合モデルとディープラーニング圧縮技術を用いて,畳み込みニューラルネットワークの改良手法を提案する。
論文 参考訳(メタデータ) (2023-04-11T13:05:50Z) - Learning Dynamics and Generalization in Reinforcement Learning [59.530058000689884]
時間差学習は, エージェントが訓練の初期段階において, 値関数の非平滑成分を適合させるのに役立つことを理論的に示す。
本研究では,高密度報酬タスクの時間差アルゴリズムを用いて学習したニューラルネットワークが,ランダムなネットワークや政策手法で学習した勾配ネットワークよりも,状態間の一般化が弱いことを示す。
論文 参考訳(メタデータ) (2022-06-05T08:49:16Z) - Dual Contrastive Learning for General Face Forgery Detection [64.41970626226221]
本稿では,正と負のペアデータを構成するDCL (Dual Contrastive Learning) という新しい顔偽造検出フレームワークを提案する。
本研究は, 事例内コントラスト学習(Intra-ICL)において, 偽造顔における局所的内容の不整合に焦点をあてる。
論文 参考訳(メタデータ) (2021-12-27T05:44:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。