EMOVA: Empowering Language Models to See, Hear and Speak with Vivid Emotions
- URL: http://arxiv.org/abs/2409.18042v2
- Date: Tue, 29 Oct 2024 06:25:52 GMT
- Title: EMOVA: Empowering Language Models to See, Hear and Speak with Vivid Emotions
- Authors: Kai Chen, Yunhao Gou, Runhui Huang, Zhili Liu, Daxin Tan, Jing Xu, Chunwei Wang, Yi Zhu, Yihan Zeng, Kuo Yang, Dingdong Wang, Kun Xiang, Haoyuan Li, Haoli Bai, Jianhua Han, Xiaohui Li, Weike Jin, Nian Xie, Yu Zhang, James T. Kwok, Hengshuang Zhao, Xiaodan Liang, Dit-Yan Yeung, Xiao Chen, Zhenguo Li, Wei Zhang, Qun Liu, Jun Yao, Lanqing Hong, Lu Hou, Hang Xu,
- Abstract summary: GPT-4o is an omni-modal model that enables vocal conversations with diverse emotions and tones.
We propose EMOVA to enable Large Language Models with end-to-end speech capabilities.
For the first time, EMOVA achieves state-of-the-art performance on both the vision-language and speech benchmarks.
- Score: 152.41217651729738
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: GPT-4o, an omni-modal model that enables vocal conversations with diverse emotions and tones, marks a milestone for omni-modal foundation models. However, empowering Large Language Models to perceive and generate images, texts, and speeches end-to-end with publicly available data remains challenging in the open-source community. Existing vision-language models rely on external tools for the speech processing, while speech-language models still suffer from limited or even without vision-understanding abilities. To address this gap, we propose EMOVA (EMotionally Omni-present Voice Assistant), to enable Large Language Models with end-to-end speech capabilities while maintaining the leading vision-language performance. With a semantic-acoustic disentangled speech tokenizer, we notice surprisingly that omni-modal alignment can further enhance vision-language and speech abilities compared with the corresponding bi-modal aligned counterparts. Moreover, a lightweight style module is proposed for flexible speech style controls (e.g., emotions and pitches). For the first time, EMOVA achieves state-of-the-art performance on both the vision-language and speech benchmarks, and meanwhile, supporting omni-modal spoken dialogue with vivid emotions.
Related papers
- OpenOmni: Large Language Models Pivot Zero-shot Omnimodal Alignment across Language with Real-time Self-Aware Emotional Speech Synthesis [68.73476738779628]
We propose openomni, a two-stage training method combining omnimodal alignment and speech generation.
Experiments demonstrate that openomni consistently improves across omnimodal, vision-language, and speech-language evaluations.
arXiv Detail & Related papers (2025-01-08T15:18:09Z) - VITA-1.5: Towards GPT-4o Level Real-Time Vision and Speech Interaction [105.88658935310605]
We propose a multi-stage training methodology that progressively trains LLM to understand both visual and speech information.
Our approach not only preserves strong vision-language capacity, but also enables efficient speech-to-speech dialogue capabilities.
By comparing our method against state-of-the-art counterparts across benchmarks for image, video, and speech tasks, we demonstrate that our model is equipped with both strong visual and speech capabilities.
arXiv Detail & Related papers (2025-01-03T18:59:52Z) - DeSTA2: Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs)
We present a simple yet effective automatic process for creating speech-text pair data.
Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data.
arXiv Detail & Related papers (2024-09-30T07:01:21Z) - Speech2rtMRI: Speech-Guided Diffusion Model for Real-time MRI Video of the Vocal Tract during Speech [29.510756530126837]
We introduce a data-driven method to visually represent articulator motion in MRI videos of the human vocal tract during speech.
We leverage large pre-trained speech models, which are embedded with prior knowledge, to generalize the visual domain to unseen data.
arXiv Detail & Related papers (2024-09-23T20:19:24Z) - Improving Spoken Language Modeling with Phoneme Classification: A Simple Fine-tuning Approach [14.5696754689252]
Recent progress in Spoken Language Modeling has shown that learning language directly from speech is feasible.
We show that fine-tuning speech representation models on phoneme classification leads to more context-invariant representations.
arXiv Detail & Related papers (2024-09-16T10:29:15Z) - FunAudioLLM: Voice Understanding and Generation Foundation Models for Natural Interaction Between Humans and LLMs [63.8261207950923]
FunAudioLLM is a model family designed to enhance natural voice interactions between humans and large language models (LLMs)
At its core are two innovative models: SenseVoice, which handles multilingual speech recognition, emotion recognition, and audio event detection; and CosyVoice, which facilitates natural speech generation with control over multiple languages, timbre, speaking style, and speaker identity.
The models related to SenseVoice and CosyVoice have been open-sourced on Modelscope and Huggingface, along with the corresponding training, inference, and fine-tuning codes released on GitHub.
arXiv Detail & Related papers (2024-07-04T16:49:02Z) - DeSTA: Enhancing Speech Language Models through Descriptive Speech-Text Alignment [82.86363991170546]
We propose a Descriptive Speech-Text Alignment approach that leverages speech captioning to bridge the gap between speech and text modalities.
Our model demonstrates superior performance on the Dynamic-SUPERB benchmark, particularly in generalizing to unseen tasks.
These findings highlight the potential to reshape instruction-following SLMs by incorporating descriptive rich, speech captions.
arXiv Detail & Related papers (2024-06-27T03:52:35Z) - BLSP-Emo: Towards Empathetic Large Speech-Language Models [34.62210186235263]
We present BLSP-Emo, a novel approach to developing an end-to-end speech-language model capable of understanding both semantics and emotions in speech.
Our experiments demonstrate that the BLSP-Emo model excels in comprehending speech and delivering empathetic responses.
arXiv Detail & Related papers (2024-06-06T09:02:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.