Improving Spoken Language Modeling with Phoneme Classification: A Simple Fine-tuning Approach
- URL: http://arxiv.org/abs/2410.00025v2
- Date: Wed, 30 Oct 2024 17:46:22 GMT
- Title: Improving Spoken Language Modeling with Phoneme Classification: A Simple Fine-tuning Approach
- Authors: Maxime Poli, Emmanuel Chemla, Emmanuel Dupoux,
- Abstract summary: Recent progress in Spoken Language Modeling has shown that learning language directly from speech is feasible.
We show that fine-tuning speech representation models on phoneme classification leads to more context-invariant representations.
- Score: 14.5696754689252
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress in Spoken Language Modeling has shown that learning language directly from speech is feasible. Generating speech through a pipeline that operates at the text level typically loses nuances, intonations, and non-verbal vocalizations. Modeling directly from speech opens up the path to more natural and expressive systems. On the other hand, speech-only systems require up to three orders of magnitude more data to catch up to their text-based counterparts in terms of their semantic abilities. We show that fine-tuning speech representation models on phoneme classification leads to more context-invariant representations, and language models trained on these units achieve comparable lexical comprehension to ones trained on hundred times more data.
Related papers
- Scaling Speech-Text Pre-training with Synthetic Interleaved Data [31.77653849518526]
Speech language models (SpeechLMs) accept speech input and produce speech output, allowing for more natural human-computer interaction.
Traditional approaches for developing SpeechLMs are constrained by the limited availability of unsupervised speech data and parallel speech-text data.
We propose a novel approach to scaling speech-text pre-training by leveraging large-scale synthetic interleaved data derived from text corpora.
arXiv Detail & Related papers (2024-11-26T17:19:09Z) - Sylber: Syllabic Embedding Representation of Speech from Raw Audio [25.703703711031178]
We propose a new model, Sylber, that produces speech representations with clean and robust syllabic structure.
Specifically, we propose a self-supervised model that regresses features on syllabic segments distilled from a teacher model which is an exponential moving average of the model in training.
This results in a highly structured representation of speech features, offering three key benefits: 1) a fast, linear-time syllable segmentation algorithm, 2) efficient syllabic tokenization with an average of 4.27 tokens per second, and 3) syllabic units better suited for lexical and syntactic understanding.
arXiv Detail & Related papers (2024-10-09T17:59:04Z) - Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs)
We present a simple yet effective automatic process for creating speech-text pair data.
Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data.
arXiv Detail & Related papers (2024-09-30T07:01:21Z) - EMOVA: Empowering Language Models to See, Hear and Speak with Vivid Emotions [152.41217651729738]
GPT-4o is an omni-modal model that enables vocal conversations with diverse emotions and tones.
We propose EMOVA to enable Large Language Models with end-to-end speech capabilities.
For the first time, EMOVA achieves state-of-the-art performance on both the vision-language and speech benchmarks.
arXiv Detail & Related papers (2024-09-26T16:44:02Z) - DeSTA: Enhancing Speech Language Models through Descriptive Speech-Text Alignment [82.86363991170546]
We propose a Descriptive Speech-Text Alignment approach that leverages speech captioning to bridge the gap between speech and text modalities.
Our model demonstrates superior performance on the Dynamic-SUPERB benchmark, particularly in generalizing to unseen tasks.
These findings highlight the potential to reshape instruction-following SLMs by incorporating descriptive rich, speech captions.
arXiv Detail & Related papers (2024-06-27T03:52:35Z) - Natural language guidance of high-fidelity text-to-speech with synthetic
annotations [13.642358232817342]
We propose a scalable method for labeling various aspects of speaker identity, style, and recording conditions.
We then apply this method to a 45k hour dataset, which we use to train a speech language model.
Our results demonstrate high-fidelity speech generation in a diverse range of accents, prosodic styles, channel conditions, and acoustic conditions.
arXiv Detail & Related papers (2024-02-02T21:29:34Z) - Few-Shot Spoken Language Understanding via Joint Speech-Text Models [18.193191170754744]
Recent work on speech representation models jointly pre-trained with text has demonstrated the potential of improving speech representations.
We leverage such shared representations to address the persistent challenge of limited data availability in spoken language understanding tasks.
By employing a pre-trained speech-text model, we find that models fine-tuned on text can be effectively transferred to speech testing data.
arXiv Detail & Related papers (2023-10-09T17:59:21Z) - Adaptive Knowledge Distillation between Text and Speech Pre-trained
Models [30.125690848883455]
Prior-informed Adaptive knowledge Distillation (PAD) is more effective in transferring linguistic knowledge than other metric-based distillation approaches.
This paper studies metric-based distillation to align the embedding space of text and speech with only a small amount of data.
We evaluate on three spoken language understanding benchmarks to show that PAD is more effective in transferring linguistic knowledge than other metric-based distillation approaches.
arXiv Detail & Related papers (2023-03-07T02:31:57Z) - Self-Supervised Speech Representation Learning: A Review [105.1545308184483]
Self-supervised representation learning methods promise a single universal model that would benefit a wide variety of tasks and domains.
Speech representation learning is experiencing similar progress in three main categories: generative, contrastive, and predictive methods.
This review presents approaches for self-supervised speech representation learning and their connection to other research areas.
arXiv Detail & Related papers (2022-05-21T16:52:57Z) - Leveraging Pre-trained Language Model for Speech Sentiment Analysis [58.78839114092951]
We explore the use of pre-trained language models to learn sentiment information of written texts for speech sentiment analysis.
We propose a pseudo label-based semi-supervised training strategy using a language model on an end-to-end speech sentiment approach.
arXiv Detail & Related papers (2021-06-11T20:15:21Z) - Bridging the Modality Gap for Speech-to-Text Translation [57.47099674461832]
End-to-end speech translation aims to translate speech in one language into text in another language via an end-to-end way.
Most existing methods employ an encoder-decoder structure with a single encoder to learn acoustic representation and semantic information simultaneously.
We propose a Speech-to-Text Adaptation for Speech Translation model which aims to improve the end-to-end model performance by bridging the modality gap between speech and text.
arXiv Detail & Related papers (2020-10-28T12:33:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.