Visual Data Diagnosis and Debiasing with Concept Graphs
- URL: http://arxiv.org/abs/2409.18055v1
- Date: Thu, 26 Sep 2024 16:59:01 GMT
- Title: Visual Data Diagnosis and Debiasing with Concept Graphs
- Authors: Rwiddhi Chakraborty, Yinong Wang, Jialu Gao, Runkai Zheng, Cheng Zhang, Fernando De la Torre,
- Abstract summary: Deep learning models often pick up inherent biases in the data during the training process, leading to unreliable predictions.
We present CONBIAS, a novel framework for diagnosing and mitigating Concept co-occurrence Biases in visual datasets.
We show that by employing a novel clique-based concept balancing strategy, we can mitigate these imbalances, leading to enhanced performance on downstream tasks.
- Score: 50.84781894621378
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The widespread success of deep learning models today is owed to the curation of extensive datasets significant in size and complexity. However, such models frequently pick up inherent biases in the data during the training process, leading to unreliable predictions. Diagnosing and debiasing datasets is thus a necessity to ensure reliable model performance. In this paper, we present CONBIAS, a novel framework for diagnosing and mitigating Concept co-occurrence Biases in visual datasets. CONBIAS represents visual datasets as knowledge graphs of concepts, enabling meticulous analysis of spurious concept co-occurrences to uncover concept imbalances across the whole dataset. Moreover, we show that by employing a novel clique-based concept balancing strategy, we can mitigate these imbalances, leading to enhanced performance on downstream tasks. Extensive experiments show that data augmentation based on a balanced concept distribution augmented by CONBIAS improves generalization performance across multiple datasets compared to state-of-the-art methods. We will make our code and data publicly available.
Related papers
- Multi-OCT-SelfNet: Integrating Self-Supervised Learning with Multi-Source Data Fusion for Enhanced Multi-Class Retinal Disease Classification [2.5091334993691206]
Development of a robust deep-learning model for retinal disease diagnosis requires a substantial dataset for training.
The capacity to generalize effectively on smaller datasets remains a persistent challenge.
We've combined a wide range of data sources to improve performance and generalization to new data.
arXiv Detail & Related papers (2024-09-17T17:22:35Z) - Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
We introduce a mathematical model that formalizes relational learning as hypergraph recovery to study pre-training of Foundation Models (FMs)
In our framework, the world is represented as a hypergraph, with data abstracted as random samples from hyperedges. We theoretically examine the feasibility of a Pre-Trained Model (PTM) to recover this hypergraph and analyze the data efficiency in a minimax near-optimal style.
arXiv Detail & Related papers (2024-06-17T06:20:39Z) - Long-Tailed Recognition on Binary Networks by Calibrating A Pre-trained Model [18.58663937035378]
We address the combined challenge of learning long-tailed distributions using highly resource-efficient binary neural networks as backbones.
We propose a calibrate-and-distill framework that uses off-the-shelf pretrained full-precision models trained on balanced datasets to use as teachers for distillation.
To better generalize to various datasets, we propose a novel adversarial balancing among the terms in the objective function and an efficient multiresolution learning scheme.
arXiv Detail & Related papers (2024-03-30T08:37:19Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - Data-Centric Long-Tailed Image Recognition [49.90107582624604]
Long-tail models exhibit a strong demand for high-quality data.
Data-centric approaches aim to enhance both the quantity and quality of data to improve model performance.
There is currently a lack of research into the underlying mechanisms explaining the effectiveness of information augmentation.
arXiv Detail & Related papers (2023-11-03T06:34:37Z) - Quality Not Quantity: On the Interaction between Dataset Design and
Robustness of CLIP [43.7219097444333]
We introduce a testbed of six publicly available data sources to investigate how pre-training distributions induce robustness in CLIP.
We find that the performance of the pre-training data varies substantially across distribution shifts.
We find that combining multiple sources does not necessarily yield better models, but rather dilutes the robustness of the best individual data source.
arXiv Detail & Related papers (2022-08-10T18:24:23Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - On the Composition and Limitations of Publicly Available COVID-19 X-Ray
Imaging Datasets [0.0]
Data scarcity, mismatch between training and target population, group imbalance, and lack of documentation are important sources of bias.
This paper presents an overview of the currently public available COVID-19 chest X-ray datasets.
arXiv Detail & Related papers (2020-08-26T14:16:01Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.